0000000000026353

AUTHOR

Anu Kankainen

0000-0003-1082-7602

Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques

Isomeric states in 128In and 130In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in 128In and 130In have been separated and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the isomer in 128Sn has been discovered in 128In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16⁺ spin-trap isomer. In 130In, the lowest-lying (10⁻) isom…

research product

Total absorption γ -ray spectroscopy of niobium isomers

15 pags. 17 figs., 5 tabs.

research product

Penning-trap mass measurements on 92, 94-98, 100Mo with JYFLTRAP

Penning-trap measurements on stable 92, 94-98, 100Mo isotopes have been performed with relative accuracy of \ensuremath1⋅10−8\ensuremath1⋅10−8 with the JYFLTRAP Penning-trap mass spectrometer by using 85Rb as a reference. The Mo isotopes have been found to be about 3keV more bound than given in the Atomic Mass Evaluation 2003 (AME03). The results confirm that the discrepancy between the ISOLTRAP and JYFLTRAP data for 101-105Cd isotopes was due to an erroneous value in the AME03 for 96Mo used as a reference at JYFLTRAP. The measured frequency ratios of Mo isotopes have been used to update mass-excess values of 30 neutron-deficient nuclides measured at JYFLTRAP. peerReviewed

research product

Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the $r$-process calculations

The rare-earth peak in the $r$-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing the uncertainties in $r$-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. $^{158}$Nd, $^{160}$Pm, $^{162}$Sm, and $^{164-166}$Gd have been measured for the first time and the precisions for $^{156}$Nd, $^{158}$Pm, $^{162,163}$Eu, $^{163}$Gd, and $^{164}$Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies $S_{2n}$ and neutron pairing energy metrics…

research product

Excited states in Br87 populated in β decay of Se87

research product

Studies on exotic nuclei of astrophysical interest near the N = Z line

research product

First isomeric yield ratio measurements by direct ion counting and implications for the angular momentum of the primary fission fragments

We report the first experimental determination of independent isomeric yield ratios using direct ion counting with a Penning trap, which offered such a high resolution in mass that isomeric states could be separated. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyvaskyla. The isomer production ratios of Ge-81, Y-96,Y-97 Sn-128(,1)30, and Sb-129 in the 25-MeV proton-induced fission of U-na(t) and Th-232 were studied. Three isomeric pairs (Ge-81, Y-96, and Sb-129) were measured for the first time for the U-na(t)(p, f) reaction, while all the reported yield ratios for the Th-232(p, f) reaction were determined for the first ti…

research product

First determination of β-delayed multiple neutron emission beyond A = 100 through direct neutron measurement : The P2n value of 136Sb

Background: β-delayed multiple neutron emission has been observed for some nuclei with A≤100, being the Rb100 the heaviest β2n emitter measured to date. So far, only 25P2n values have been determined for the ≈300 nuclei that may decay in this way. Accordingly, it is of interest to measure P2n values for the other possible multiple neutron emitters throughout the chart of the nuclides. It is of particular interest to make such a measurement for nuclei with A>100 to test the predictions of theoretical models and simulation tools for the decays of heavy nuclei in the region of very neutron-rich nuclei. In addition, the decay properties of these nuclei are fundamental for the understanding of a…

research product

Experimental study of 100Tc β decay with total absorption γ -ray spectroscopy

The β decay of 100Tc has been studied by using the total absorption γ -ray spectroscopy technique at the Ion Guide Isotope Separator On-Line facility in Jyväskylä. In this work the new Decay Total Absorption γ -ray Spectrometer in coincidence with a cylindrical plastic β detector has been employed. The β intensity to the ground state obtained from the analysis is in good agreement with previous high-resolution measurements. However, differences in the feeding to the first-excited state as well as weak feeding to a new level at high excitation energy have been deduced from this experiment. Theoretical calculations performed in the quasiparticle random-phase approximation framework are also r…

research product

β decay of Cd127 and excited states in In127

A dedicated spectroscopic study of the β decay of 127Cd was conducted at the IGISOL facility at the University of Jyvaskyla. Following high-resolution mass separation in a Penning trap, β-γ-γ coincidences were used to considerably extend the decay scheme of 127In. The β-decaying 3/2+ and 11/2- states in 127Cd have been identified with the 127Cd ground state and the 283-keV isomer. Their respective half-lives have been measured to 0.45(+12-8)s and 0.36(4) s. The experimentally observed β feeding to excited states of 127In and the decay scheme of 127In are discussed in conjunction with large-scale shell-model calculations.

research product

Total absorption studies of high priority decays for reactor applications: 86Br and 91Rb

Preliminary results from beta decay studies of nuclei that are important for reactor applications are presented. The beta decays have been studied using the total absorption technique (TAS) and the pure beams provided by the JYFLTRAP system at the IGISOL facility of the University of Jyväskylä. peerReviewed

research product

New accurate measurements of neutron emission probabilities for relevant fission products

We have performed new accurate measurements of the beta-delayed neutron emission probability for ten isotopes of the elements Y, Sb, Te and I. These are fission products that either have a significant contribution to the fraction of delayed neutrons in reactors or are relatively close to the path of the astrophysical r process. The measurements were performed with isotopically pure radioactive beams using a constant and high efficiency neutron counter and a low noise beta detector. Preliminary results are presented for six of the isotopes and compared with previous measurements and theoretical calculations. peerReviewed

research product

Precision Mass Measurements on Neutron-Rich Rare-Earth Isotopes at JYFLTRAP : Reduced Neutron Pairing and Implications for r-Process Calculations

The rare-earth peak in the r-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step towards elucidating the nuclear structure and reducing the uncertainties in r-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. Nd158, Pm160, Sm162, and Gd164-166 have been measured for the first time, and the precisions for Nd156, Pm158, Eu162,163, Gd163, and Tb164 have been improved considerably. Nuclear structure has been probed via two-neutron separation energies S2n and neutron pairing energy metrics Dn. The data do not support the existence of…

research product

High-precision mass measurement ofS31with the double Penning trap JYFLTRAP improves the mass value forCl32

research product

Study of the β decay of fission products with the DTAS detector

Total Absorption Spectroscopy measurements of the β decay of 103Mo and 103Tc, important contributors to the decay heat summation calculation in reactors, are reported in this work. The analysis of the experiment, performed at IGISOL with the new DTAS detector, show new β intensity that was not detected in previous measurements with Ge detectors. peerReviewed

research product

Impact of nuclear mass measurements in the vicinity of 132Sn on the r-process nucleosynthesis

Nuclear masses are a key aspect in the modelling of nuclear reaction rates for the r-process nucleosynthesis. High precision mass measurements drastically reduce the associated uncertainties in the modelling of r-process nucleosynthesis. We investigate the impact of nuclear mass uncertainties on neutron-capture rates calculations using a Hauser – Feshbach statistical code in the vicinity of 132Sn. Finally, we study the impact of the propagated neutron-capture reaction rates uncertainties on the r-process nucleosynthesis. We find that mass measurements with uncertainties higher than 20 keV affect the calculation of reaction rates. We also note that modelling of reaction rates can differ for …

research product

Single and Double Beta-DecayQValues among the TripletZr96,Nb96, andMo96

The atomic mass relations among the mass triplet ^{96}Zr, ^{96}Nb, and ^{96}Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyvaskyla. We report Q values for the ^{96}Zr single and double β decays to ^{96}Nb and ^{96}Mo, as well as the Q value for the ^{96}Nb single β decay to ^{96}Mo, which are Q_{β}(^{96}Zr)=163.96(13), Q_{ββ}(^{96}Zr)=3356.097(86), and Q_{β}(^{96}Nb)=3192.05(16)  keV. Of special importance is the ^{96}Zr single β-decay Q value, which has never been determined directly. The single β decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the…

research product

Total absorption study of the \beta decay of 102,104,105Tc

The β-feeding probabilities for three important contributors to the decay heat in nuclear reactors, namely 102,104,105Tc, have been measured using the total absorption spectroscopy technique. For the measurements, sources of very high isobaric purity have been obtained using a Penning trap (JYFLTRAP). A detailed description of the data analysis is given and the results are compared with high-resolution measurements and theoretical calculations. peerReviewed

research product

Ydinfysiikkaa, jotta ymmärtäisimme miten alkuaineet ovat syntyneet tähdissä

Ihmisiä on aina kiinnostanut, miten maailma on syntynyt. Kalevalassa kerrotaan maailman saaneen alkunsa kuudesta kultaisesta ja yhdestä rautaisesta munasta. Nykytieteen perustella toki tiedämme, ettei näin ole. nonPeerReviewed

research product

Fission studies at IGISOL/JYFLTRAP: Simulations of the ion guide for neutron-induced fission and comparison with experimental data

For the production of exotic nuclei at the IGISOL facility, an ion guide for neutron-induced fission has been developed and tested in experiments. Fission fragments are produced inside the ion guide and collected using a helium buffer gas. Meanwhile, a GEANT4 model has been developed to simulate the transportation and stopping of the charged fission products. In a recent measurement of neutron-induced fission yields, implantation foils were located at different positions in the ion guide. The gamma spectra from these foils and the fission targets are compared to the results from the GEANT4 simulation. In order to allow fission yield measurements in the low yield regions, towards the tails a…

research product

Penning-trap-assisted study of excitations in Br88 populated in β decay of Se88

Excited levels of $^{88}\mathrm{Br}$ populated in the $\ensuremath{\beta}$ decay of $^{88}\mathrm{Se}$ have been studied by means of $\ensuremath{\beta}\ensuremath{\gamma}$ and $\ensuremath{\gamma}\ensuremath{\gamma}$ spectroscopy methods. Neutron-rich parent $^{88}\mathrm{Se}$ nuclei were produced with proton-induced fission of $^{238}\mathrm{U}$ using the Ion Guide Isotope Separator On-Line (IGISOL) method and separated from contaminants using a dipole magnet and the coupled JYFLTRAP Penning trap at the Accelerator Laboratory of the University of Jyv\"askyl\"a. The level scheme of $^{88}\mathrm{Br}$ has been constructed and $logft$ values of levels were determined. The ground-state spin o…

research product

Signatures of oblate deformation in the ^{111}Tc nucleus

Monoisotopic samples of exotic, neutron-rich ${}^{111}$Mo nuclei, produced in the deuteron-induced fission of ${}^{238}$U and separated using the IGISOL3 isotope separator, coupled to the JYFLTRAP Penning trap, were used to perform $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-coincidence spectroscopy of ${}^{111}$Tc. New excited levels in ${}^{111}$Tc populated in ${\ensuremath{\beta}}^{\ensuremath{-}}$ decay of ${}^{111}$Mo provide the first indication for an oblate deformation in the mass $A\ensuremath{\approx}110$ region. The wide spin range of levels populated in ${}^{111}$Tc following the decay of ${}^{111}$Mo indicates the existence of two $\ensuremath{\beta}$-decaying levels in ${…

research product

Study of radial motion phase advance during motion excitations in a Penning trap and accuracy of JYFLTRAP mass spectrometer

Phase-imaging ion-cyclotron-resonance technique has been implemented at the Penning-trap mass spectrometer JYFLTRAP and is routinely employed for mass measurements of stable and short-lived nuclides produced at IGISOL facility. Systematic uncertainties that impose limitations on the accuracy of measurements are discussed. It was found out that the phase evolution of the radial motion of ions in a Penning trap during the application of radio-frequency fields leads to a systematic cyclotron frequency shift when more than one ion species is present in the trap during the cyclotron frequency measurement. An analytic expression was derived to correctly account for the shift. Cross-reference mass…

research product

Multi-nucleon transfer reactions at ion catcher facilities : a new way to produce and study heavy neutron-rich nuclei

Abstract The production of very neutron-rich nuclides heavier than fission fragments is an ongoing experimental challenge. Multi-nucleon transfer reactions (MNT) have been suggested as a method to produce these nuclides. By thermalizing the reaction products in gas-filled stopping cells, we can deliver them as cooled high-quality beams to decay, laser and mass spectrometry experiments. High precision mass spectrometry will allow for the first time to universally and unambiguously identify the atomic and proton numbers of the ions produced in MNT reactions. In this way their ground and isomeric state properties can be studied in high-precision measurements. In experiments at IGISOL, Finland …

research product

Characterization of a neutron–beta counting system with beta-delayed neutron emitters

A new detection system for the measurement of beta-delayed neutron emission probabilities has been characterized using fission products with well known β-delayed neutron emission properties. The setup consists of BELEN-20, a 4π neutron counter with twenty 3He proportional tubes arranged inside a large polyethylene neutron moderator, a thin Si detector for β counting and a selftriggering digital data acquisition system. The use of delayed-neutron precursors with different neutron emission windows allowed the study of the effect of energy dependency on neutron, β and β-neutron rates. The observed effect is well reproduced by Monte Carlo simulations. The impact of this dependency on the accura…

research product

Mass ofAl23for testing the isobaric multiplet mass equation

The mass excess of the proton-rich nucleus $^{23}\mathrm{Al}$ has been measured with the JYFLTRAP Penning trap setup. As a result of our experiment we obtain a mass excess of 6748.07(34) keV, and by combining the value to existing experimental data we have tested the validity of the isobaric multiplet mass equation $(\mathrm{IMME})$ for the $T=3/2$ quartet in the $A=23$ isobar. The fit to the IMME results in a vanishing cubic term equivalent to zero with high precision [$0.22(42)$ keV].

research product

Nuclear Data and Experiments for Astrophysics

Nuclear astrophysics aims to understand the origin of elements and the role of nuclear processes in astrophysical events. Nuclear reactions and reaction rates depend strongly on nuclear properties and on the astrophysical environment. Nuclear inputs for stellar reaction rates involve a variety of nuclear properties, theoretical models, and experimental data. Experiments providing data for nuclear astrophysics range from stable ion beam direct measurements to radioactive beam experiments employing inverse kinematics or indirect methods. Many properties relevant for astrophysical calculations, such as nuclear masses and β-decays, have also been intensively studied. This contribution shortly i…

research product

Discovery of an Exceptionally Strong β -Decay Transition of F20 and Implications for the Fate of Intermediate-Mass Stars

A significant fraction of stars between 7 and 11 solar masses are thought to become supernovae, but the explosion mechanism is unclear. The answer depends critically on the rate of electron capture on ^{20}Ne in the degenerate oxygen-neon stellar core. However, because of the unknown strength of the transition between the ground states of ^{20}Ne and ^{20}F, it has not previously been possible to fully constrain the rate. By measuring the transition, we establish that its strength is exceptionally large and that it enhances the capture rate by several orders of magnitude. This has a decisive impact on the evolution of the core, increasing the likelihood that the star is (partially) disrupte…

research product

Towards commissioning the new IGISOL-4 facility

Abstract The Ion Guide Isotope Separator On-Line facility at the Accelerator Laboratory of the University of Jyvaskyla is currently being re-commissioned as IGISOL-4 in a new experimental hall. Access to intense beams of protons and deuterons from a new MCC30/15 cyclotron, with continued possibility to deliver heavy-ion beams from the K = 130 MeV cyclotron, offers extensive opportunities for long periods of fundamental experimental research, developments and applications. A new layout of beam lines with a considerable increase in floor space offers new modes of operation at the facility, as well as a possibility to incorporate more complex detector setups. We present a general overview of I…

research product

Ion traps in nuclear physics—Recent results and achievements

Abstract Ion traps offer a way to determine nuclear binding energies through atomic mass measurements with a high accuracy and they are routinely used to provide isotopically or even isomerically pure beams of short-living ions for post-trap decay spectroscopy experiments. In this review, different ion-trapping techniques and progresses in recent nuclear physics experiments employing low-energy ion traps are discussed. The main focus in this review is on the benefit of recent high accuracy mass measurements to solve some key problems in physics related to nuclear structure, nuclear astrophysics as well as neutrinos. Also, several cases of decay spectroscopy experiments utilizing trap-purifi…

research product

Precision mass measurements of neutron-rich Tc, Ru, Rh, and Pd isotopes

The masses of neutron-rich $^{106\ensuremath{-}112}\mathrm{Tc}$, $^{106\ensuremath{-}115}\mathrm{Ru}$, $^{108\ensuremath{-}118}\mathrm{Rh}$, and $^{112\ensuremath{-}120}\mathrm{Pd}$ produced in proton-induced fission of uranium were determined using the JYFLTRAP double Penning trap setup. The measured isotopic chains include a number of previously unmeasured nuclei. Typical precisions on the order of 10 keV or better were achieved, representing a factor of 10 improvement over earlier data. In many cases, significant deviations from the earlier measurements were found. The obtained data set of 39 masses is compared with different mass predictions and analyzed for global trends in the nuclear…

research product

High-Precision Proton-Capture Q Values for 25Al(p,γ)26Si and 30P(p,γ)31Si

The masses of astrophysically relevant nuclei, 25Al and 30P, have recently been measured with the JYFLTRAP double Penning trap at the new IGISOL-4 facility at the University of Jyväskylä. Unparalleled precisions of 63 and 64 eV were achieved for the 25Al and 30P masses, respectively. The proton-capture Q values for 25Al(p, γ)26Si and 30P(p, γ)31S were also determined, and their precisions improved by a factor of 4 and 2, respectively, in comparison with AME12. The impact of the more precise values on the resonant proton-capture rate has also been studied. peerReviewed

research product

Developments for neutron-induced fission at IGISOL-4

At the IGISOL-4 facility, neutron-rich, medium mass nuclei have usually been produced via charged particle-induced fission of natural uranium and thorium. Neutron-induced fission is expected to have a higher production cross section of the most neutron-rich species. Development of a neutron source along with a new ion guide continues to be one of the major goals since the commissioning of IGISOL-4. Neutron intensities at di↵erent angles from a beryllium neutron source have been measured in an on-line experiment with a 30 MeV proton beam. Recently, the new ion guide coupled to the neutron source has been tested as well. Details of the neutron source and ion guide design together with prelimi…

research product

Large Impact of the Decay of Niobium Isomers on the Reactor ¯νe Summation Calculations

Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The β-intensity distributions of 100gs;100mNb and 102gs;102mNb β decays have been determined using the total absorption γ-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyväskylä. Here, the double Penning trap system JYFLTRAP was employed to disentangle the β decay of the isomeric states. The new data obtained in this …

research product

High-precision mass measurement of $^{168}$Yb for verification of nonlinear isotope shift

The absolute mass value of $^{168}$Yb has been directly determined with the JYFLTRAP Penning trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility. A more precise value of the mass of $^{168}$Yb is needed to extract possible signatures of beyond standard model physics from high-precision isotope shift measurements of Yb atomic transition frequencies. The measured mass-excess value, ME($^{168}$Yb) = $-$61579.846(94) keV, is 12 times more precise and deviates from the Atomic Mass Evaluation 2016 value by 1.7$\sigma$. The impact on precision isotope shift studies of the stable Yb isotopes is discussed.

research product

Total absorption γ -ray spectroscopy of the β -delayed neutron emitters I137 and Rb95

The decays of the β-delayed neutron emitters I137 and Rb95 have been studied with the total absorption γ-ray spectroscopy technique. The purity of the beams provided by the JYFLTRAP Penning trap at the ion guide isotope separator on-line facility in Jyvaskyla allowed us to carry out a campaign of isotopically pure measurements with the decay total absorption γ-ray spectrometer, a segmented detector composed of 18 NaI(Tl) modules. The contamination coming from the interaction of neutrons with the spectrometer has been carefully studied, and we have tested the use of time differences between prompt γ rays and delayed neutron interactions to eliminate this source of contamination. Due to the s…

research product

High-precision measurement of the mass difference between 102Pd and 102Ru

The Q-value for the neutrinoless double electron capture on 102Pd, Qϵϵ(102Pd), is determined as the atomic mass difference between 102Pd and 102Ru. A precise measurement of the Qϵϵ(102Pd) at the SHIPTRAP Penning trap showed a more than 10σ deviation to the adopted Atomic Mass Evaluation (AME) value. The reliability of the SHIPTRAP measurement was challenged because the AME value was based on numerous experiments including β and electron capture decays and very precise (n, γ) data, all agreeing with each other. To solve the discrepancy, the Qϵϵ(102Pd) has now been determined with the JYFLTRAP Penning trap at the IGISOL facility in the Accelerator Laboratory of the University of Jyväskylä. Th…

research product

Measurement of the heaviest Beta-delayed 2-neutron emitter: 136Sb

The Beta-delayed neutron emission probability, Pn , of very exotic nuclei is crucial for the understanding of nuclear structure properties of many isotopes and astrophysical processes such as the rapid neutron capture process (r-process). In addition Beta-delayed neutrons are important in a nuclear power reactor operated in a prompt sub-critical, delayed critical condition, as they contribute to the decay heat inducing fission reactions after a shut down. The study of neutron-rich isotopes and the measurement of Beta-delayed one-neutron emitters (Beta1n) is possible thanks to the Rare Isotope Beam (RIB) facilities, where radioactive beams allow the production of exotic nuclei of interest, w…

research product

On the resonant neutrinoless double-electron-capture decay of ^{136}Ce

Abstract The double-electron-capture Q value for the 136Ce decay to 136Ba has been determined at JYFLTRAP. The measured value 2378.53(27) keV excludes the energy degeneracy with the 0 + excited state of the decay daughter 136Ba at 2315.32(7) keV in a resonant 0 ν ECEC decay by 11.67 keV. The new Q value differs from the old adopted value 2419(13) keV (Atomic Mass Evaluation 2003) by 40 keV and is 50 times more precise. Our calculations show that the precise Q value renders the resonant 0 ν ECEC decay of 136Ce undetectable by the future underground detectors. We measured also the double-β decay Q value of 136Xe to be 2457.86(48) keV which agrees well with the value 2457.83(37) keV measured a…

research product

Characterization of a cylindrical plastic β-detector with Monte Carlo simulations of optical photons

In this work we report on the Monte Carlo study performed to understand and reproduce experimental measurements of a new plastic β-detector with cylindrical geometry. Since energy deposition simulations differ from the experimental measurements for such a geometry, we show how the simulation of production and transport of optical photons does allow one to obtain the shapes of the experimental spectra. Moreover, taking into account the computational effort associated with this kind of simulation, we develop a method to convert the simulations of energy deposited into light collected, depending only on the interaction point in the detector. This method represents a useful solution when extens…

research product

Determination of β -decay ground state feeding of nuclei of importance for reactor applications

12 pags., 6 figs., 3 tabs.

research product

Independent Isotopic Product Yields in 25 MeV and 50 MeV Charged Particle Induced Fission of 238U and 232Th

Abstract Independent isotopic yields for most elements from Zn to La in 25-MeV proton-induced fission of 238U and 232Th have been determined at the IGISOL facility in the University of Jyvaskyla. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in 50-MeV proton-induced fission of 238U and for Zn, Ga, Rb, Sr, Cd and In in 25-MeV deuterium-induced fission of 238U have been measured. The utilised technique recently developed at the University of Jyvaskyla, is based on a combination of the ion guide technique and the ability of a Penning trap to unambiguously identify the isotopes by their atomic mass. Since the yields are determined by ion counting, no prior knowledge beyond the …

research product

Mass measurements in the vicinity of the doubly magic waiting pointNi56

Masses of $^{56,57}\mathrm{Fe}$, $^{53}\mathrm{Co}$${}^{m}$, $^{53,56}\mathrm{Co}$, $^{55,56,57}\mathrm{Ni}$, $^{57,58}\mathrm{Cu}$, and $^{59,60}\mathrm{Zn}$ have been determined with the JYFLTRAP Penning trap mass spectrometer at the Ion-Guide Isotope Separator On-Line facility with a precision of $\ensuremath{\delta}m/m\ensuremath{\leqslant}3\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}8}$. The ${Q}_{\mathrm{EC}}$ values for $^{53}\mathrm{Co}$, $^{55}\mathrm{Ni}$, $^{56}\mathrm{Ni}$, $^{57}\mathrm{Cu}$, $^{58}\mathrm{Cu}$, and $^{59}\mathrm{Zn}$ have been measured directly with a typical precision of better than $0.7 \mathrm{keV}$ and Coulomb displacement energies have been dete…

research product

High-precision mass measurements for the isobaric multiplet mass equation atA= 52

Masses of $^{52}$Co, $^{52}$Co$^m$, $^{52}$Fe, $^{52}$Fe$^m$, and $^{52}$Mn have been measured with the JYFLTRAP double Penning trap mass spectrometer. Of these, $^{52}$Co and $^{52}$Co$^m$ have been experimentally determined for the first time and found to be more bound than predicted by extrapolations. The isobaric multiplet mass equation for the $T=2$ quintet at $A=52$ has been studied employing the new mass values. No significant breakdown (beyond the $3\sigma$ level) of the quadratic form of the IMME was observed ($\chi^2/n=2.4$). The cubic coefficient was 6.0(32) keV ($\chi^2/n=1.1$). The excitation energies for the isomer and the $T=2$ isobaric analogue state in $^{52}$Co have been d…

research product

Strong γ-ray emission from neutron unbound states populated in β-decay: Impact on (n,γ) cross-section estimates

J. L. Taín et al. -- 6 pags., 7 figs., 1 tab. -- Open Access funded by Creative Commons Atribution Licence 4.0

research product

High-precision measurement of the mass difference between 102Pd and 102Ru

Abstract The Q-value for the neutrinoless double electron capture on 102Pd, Qϵϵ(102Pd), is determined as the atomic mass difference between 102Pd and 102Ru. A precise measurement of the Qϵϵ(102Pd) at the SHIPTRAP Penning trap showed a more than 10σ deviation to the adopted Atomic Mass Evaluation (AME) value. The reliability of the SHIPTRAP measurement was challenged because the AME value was based on numerous experiments including β and electron capture decays and very precise (n, γ) data, all agreeing with each other. To solve the discrepancy, the Qϵϵ(102Pd) has now been determined with the JYFLTRAP Penning trap at the IGISOL facility in the Accelerator Laboratory of the University of Jyva…

research product

Precision mass measurements of Fe67 and Co69,70 : Nuclear structure toward N=40 and impact on r -process reaction rates

Accurate mass measurements of neutron-rich iron and cobalt isotopes $^{67}\mathrm{Fe}$ and $^{69,70}\mathrm{Co}$ have been realized with the JYFLTRAP double Penning-trap mass spectrometer. With novel ion-manipulation techniques, the masses of the $^{69,70}\mathrm{Co}$ ground states and the $1/{2}^{\ensuremath{-}}$ isomer in $^{69}\mathrm{Co}$ have been extracted for the first time. The measurements remove ambiguities in the previous mass values and yield a smoother trend on the mass surface, extending it beyond $N=40$. The moderate $N=40$ subshell gap has been found to weaken below $^{68}\mathrm{Ni}$, a region known for shape coexistence and increased collectivity. The excitation energy for…

research product

Precision Ga71–Ge71 mass-difference measurement

Abstract The Ga 71 ( ν e , e − ) Ge 71 reaction Q value has been measured with the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyvaskyla to Q  = 232.443(93) keV. This value agrees with previous measurements, though it features a much higher accuracy. The Q value is being discussed in the context of the solar neutrino capture rate in Ga 71 .

research product

Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

Volume: 111 Host publication title: WONDER-2015 Host publication sub-title: 4TH INTERNATIONAL WORKSHOP ON NUCLEAR DATA EVALUATION FOR REACTOR APPLICATIONS Isbn(print): 978-2-7598-1970-6 Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. Rb-92,Rb-93 are two fission products of importance in reactor antineutrino spectra and decay heat, but their beta-decay properti…

research product

r -process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos

This is an exciting time for the study of r-process nucleosynthesis. Recently, a neutron star merger GW170817 was observed in extraordinary detail with gravitational waves and electromagnetic radiation from radio to gamma rays. The very red color of the associated kilonova suggests that neutron star mergers are an important r-process site. Astrophysical simulations of neutron star mergers and core collapse supernovae are making rapid progress. Detection of both, electron neutrinos and antineutrinos from the next galactic supernova will constrain the composition of neutrino-driven winds and provide unique nucleosynthesis information. Finally FRIB and other rare-isotope beam facilities will s…

research product

Production of Exotic Nuclei via MNT Reactions Using Gas Cells

The use of multi-nucleon transfer (MNT) reactions to produce neutron-rich nuclei in the heavy region has received an increased attention in the last decade. The feasibility of employing such reactions at the FRS Ion Catcher facility at GSI and the IGISOL facility at JYFL is studied using a combination of theoretical calculations and experiment simulations. The reactions are computed within a Langevin-type model, and the Geant program is used to simulate the transport of the resulting products within the experimental setups of the above-mentioned facilities. The angular distribution of ion release, possible target choices and target-to-beam-dump distances are discussed. peerReviewed

research product

Electron-capture branch ofTc100and tests of nuclear wave functions for double-βdecays

We present a measurement of the electron-capture branch of $^{100}\mathrm{Tc}$. Our value, $B(\mathrm{EC})=(2.6\ifmmode\pm\else\textpm\fi{}0.4)\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}5}$, implies that the $^{100}\mathrm{Mo}$ neutrino absorption cross section to the ground state of $^{100}\mathrm{Tc}$ is roughly 50% larger than previously thought. Disagreement between the experimental value and QRPA calculations relevant to double-$\ensuremath{\beta}$ decay matrix elements persists. We find agreement with previous measurements of the 539.5- and 590.8-keV $\ensuremath{\gamma}$-ray intensities.

research product

Excited states in 31S studied via beta decay of 31Cl

The beta decay of 31Cl has been studied with a silicon detector array and a HPGe detector at the IGISOL facility. Previously controversial proton peaks have been confirmed to belong to 31Cl and a new proton group with an energy of 762(14) keV has been found. Proton captures to this state at 6921(15) keV in 31S can have an effect on the reaction rate of 30P(p,γ) in ONe novae. Gamma rays of 1249.1(14) keV and 2234.5(8) keV corresponding to the de-excitations of the first two excited states in 31S have been measured. No beta-delayed protons from the IAS have been observed. peerReviewed

research product

Gamma/neutron competition above the neutron separation energy in delayed neutron emitters

To study the β-decay properties of some well known delayed neutron emitters an experiment was performed in 2009 at the IGISOL facility (University of Jyvaskyla in Finland) using Total Absorption -ray Spectroscopy (TAGS) technique. The aim of these measurements is to obtain the full β-strength distribution below the neutron separation energy (Sn) and the γ/neutron competition above. This information is a key parameter in nuclear technology applications as well as in nuclear astrophysics and nuclear structure. Preliminary results of the analysis show a significant γ-branching ratio above Sn. © Owned by the authors, published by EDP Sciences, 2014.

research product

Precision Mass Measurements beyond $^{132}$Sn: Anomalous behaviour of odd-even staggering of binding energies

Atomic masses of the neutron-rich isotopes $^{121-128}$Cd, $^{129,131}$In, $^{130-135}$Sn, $^{131-136}$Sb, and $^{132-140}$Te have been measured with high precision (10 ppb) using the Penning trap mass spectrometer JYFLTRAP. Among these, the masses of four r-process nuclei $^{135}$Sn, $^{136}$Sb, and $^{139,140}$Te were measured for the first time. The data reveals a strong $N$=82 shell gap at $Z$=50 but indicates the importance of correlations for $Z>50$. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across $N$=82 for Sn, with the $Z$-dependence that is unexplainable by the current theoretical models.

research product

$Q$-value of the superallowed $\beta$ decay of 62Ga

Masses of the radioactive isotopes 62Ga, 62Zn and 62Cu have been measured at the JYFLTRAP facility with a relative precision of better than 18 ppb. A Q_EC value of (9181.07 +- 0.54) keV for the superallowed decay of 62Ga is obtained from the measured cyclotron frequency ratios of 62Ga-62Zn, 62Ga-62Ni and 62Zn-62Ni ions. The resulting Ft-value supports the validity of the conserved vector current hypothesis (CVC). The mass excess values measured were (-51986.5 +-1.0) keV for 62Ga, (-61167.9 +- 0.9) keV for 62Zn and (-62787.2 +- 0.9) keV for 62Cu.

research product

Production of pure samples of 131mXe and 135Xe

Pure samples of (131m)Xe, (133m)Xe, (133)Xe and (135)Xe facilitate the calibration and testing of noble gas sampler stations and related laboratory instrumentation. We have earlier reported a Penning trap-based production method for pure (133m)Xe and (133)Xe samples. Here we complete the work by reporting the successful production of pure (131m)Xe and (135)Xe samples using the same technique. In addition, we present data on xenon release from graphite.

research product

Total absorption spectroscopy of fission fragments relevant for reactor antineutrino spectra

International audience; The accurate determination of reactor antineutrino spectra remains a very active research topic for which new methods of study have emerged in recent years. Indeed, following the long-recognized reactor anomaly (measured antineutrino deficit in short baseline reactor experiments when compared with spectral predictions), the three international reactor neutrino experiments Double Chooz, Daya Bay and Reno have recently demonstrated the existence of spectral distortions in their measurements with respect to the same predictions. These spectral predictions were obtained through the conversion of integral beta-energy spectra obtained at the ILL research reactor. Several s…

research product

Low-spin excitations in the 109Tc nucleus

Monoisotopic samples of ${}^{109}$Mo nuclei, produced in the deuteron-induced fission of ${}^{238}$U and separated using the IGISOL mass separator coupled to a Penning trap, were used to perform $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-coincidence spectroscopy of ${}^{109}$Tc. Spin and parity 5/2${}^{+}$ for the ground state of ${}^{109}$Mo, proposed earlier, are supported in the present work. Three new low-energy levels observed in ${}^{109}$Tc are interpreted as bandheads of the $\ensuremath{\pi}3/{2}^{\ensuremath{-}}$[301], $\ensuremath{\pi}5/{2}^{\ensuremath{-}}$[303], and $\ensuremath{\pi}1/{2}^{+}$[431] configurations, respectively. A further three levels observed around 0.4 Me…

research product

Radioactive ion beam manipulation at the IGISOL-4 facility

The IGISOL-4 facility in the JYFL Accelerator Laboratory of the University of Jyvaskyla (JYFL-ACCLAB) produces low-energy radioactive ion beams, primarily for nuclear spectroscopy, utilizing an ion guide-based, ISOL-type mass separator. Recently, new ion manipulation techniques have been introduced at the IGISOL-4 including the application of the PI-ICR (Phase-Imaging Ion Cyclotron Resonance) technique at the JYFLTRAP Penning trap, as well as commissioning of a Multi-Reflection Time-Of-Flight (MR-TOF) separator/spectrometer. The successful operation of the MR-TOF also required significant improvement of the Radio-Frequency Quadrupole (RFQ) cooler and buncher device beam pulse time structure…

research product

Upgrade and yields of the IGISOL facility

The front end of the Jyvaskyla IGISOL facility was upgraded in 2003 by increasing its pumping capacity and by improving the radiation shielding. In late 2005, the skimmer electrode of the mass separator was replaced by a sextupole ion guide, which improved the mass separator efficiency up to an order of magnitude. The current design of the facility is described. The updated yield data, achieved with and without the additional JYFLTRAP purification, using both fusion evaporation reactions and particle induced fission is presented to give an overview of the capability of the facility. These data have been determined either by radioactivity measurements or by direct ion counting after the Penn…

research product

High-Precision Q -Value Measurement Confirms the Potential of Cs135 for Absolute Antineutrino Mass Scale Determination

The ground-state-to-ground-state $\ensuremath{\beta}$-decay $Q$ value of $^{135}\mathrm{Cs}(7/{2}^{+})\ensuremath{\rightarrow}^{135}\mathrm{Ba}(3/{2}^{+})$ has been directly measured for the first time. The measurement was done utilizing both the phase-imaging ion-cyclotron resonance technique and the time-of-flight ion-cyclotron resonance technique at the JYFLTRAP Penning-trap setup and yielded a mass difference of 268.66(30) keV between $^{135}\mathrm{Cs}(7/{2}^{+})$ and $^{135}\mathrm{Ba}(3/{2}^{+})$. With this very small uncertainty, this measurement is a factor of 3 more precise than the currently adopted $Q$ value in the Atomic Mass Evaluation 2016. The measurement confirms that the f…

research product

Characterization of a neutron-beta counting system with beta-delayed neutron emitters

Abstract A new detection system for the measurement of beta-delayed neutron emission probabilities has been characterized using fission products with well known β-delayed neutron emission properties. The setup consists of BELEN-20, a 4π neutron counter with twenty 3He proportional tubes arranged inside a large polyethylene neutron moderator, a thin Si detector for β counting and a self-triggering digital data acquisition system. The use of delayed-neutron precursors with different neutron emission windows allowed the study of the effect of energy dependency on neutron, β and β–neutron rates. The observed effect is well reproduced by Monte Carlo simulations. The impact of this dependency on …

research product

Mass measurements of neutron-deficient nuclei and their implications for astrophysics

During the years 2005-2010 the double-Penning-trap mass spectrometer JYFLTRAP has been used to measure the masses of 90 ground and 8 isomeric states of neutron-deficient nuclides with a typical precision of better than 10keV. The masses of 14 nuclides -- 84Zr , 88, 89Tc , 90-92Ru , 92-94Rh , 94, 95Pd , 106, 108, 110Sb -- have been experimentally determined for the first time. This article gives an overview on these measurements and their impact on the modeling of the astrophysical rp -process. peerReviewed

research product

Isomer and decay studies for the rp process at IGISOL

This article reviews the decay studies of neutron-deficient nuclei within the mass region \ensuremathA=56--100 performed at the Ion-Guide Isotope Separator On-Line (IGISOL) facility in the University of Jyväskylä over last 25 years. Development from He-jet measurements to on-line mass spectrometry, and eventually to atomic mass measurements and post-trap spectroscopy at IGISOL, has yielded studies of around 100 neutron-deficient nuclei over the years. The studies form a solid foundation to astrophysical rp -process path modelling. The focus is on isomers studied either via spectroscopy or via Penning-trap mass measurements. The review is complemented with recent results on the ground and is…

research product

Total absorption γ-ray spectroscopy of beta delayed neutron emitters

Preliminary results of the data analysis of the beta decay of 94Rb using a novel - segmented- total absorption spectrometer are shown in this contribution. This result is part of a systematic study of important contributors to the decay heat problem in nuclear reactors. In this particular case the goal is to determine the beta intensity distribution below the neutron separation energy and the gamma/beta competition above.

research product

Isomeric states close to doubly magic $^{132}$Sn studied with JYFLTRAP

The double Penning trap mass spectrometer JYFLTRAP has been employed to measure masses and excitation energies for $11/2^-$ isomers in $^{121}$Cd, $^{123}$Cd, $^{125}$Cd and $^{133}$Te, for $1/2^-$ isomers in $^{129}$In and $^{131}$In, and for $7^-$ isomers in $^{130}$Sn and $^{134}$Sb. These first direct mass measurements of the Cd and In isomers reveal deviations to the excitation energies based on results from beta-decay experiments and yield new information on neutron- and proton-hole states close to $^{132}$Sn. A new excitation energy of 144(4) keV has been determined for $^{123}$Cd$^m$. A good agreement with the precisely known excitation energies of $^{121}$Cd$^m$, $^{130}$Sn$^m$, an…

research product

Structure of 115Ag studied by β− decays of 115Pd and 115mPd

The excited levels of 115Ag have been studied via the beta decay of 115Pd and 115Pdm. The beta-decay schemes for both states have been considerably extended, especially the scheme following the decay of 115Pdm which was practically unknown before this work. Transition intensities and log10 f t values are reported, which have been missing in the literature. A set of levels around 2 MeV has been found to be strongly populated by the beta decay of the ground state of 115Pd and is suggested to have a three-quasiparticle nature. The properties of excited levels have been compared with the level systematics of lighter neutron-rich silver isotopes, and new spin assignments as well as identificatio…

research product

Precise half-life measurement of the Si-26 ground state

The beta-decay half-life of 26Si was measured with a relative precision of 1.4*10e3. The measurement yields a value of 2.2283(27) s which is in good agreement with previous measurements but has a precision that is better by a factor of 4. In the same experiment, we have also measured the non-analogue branching ratios and could determine the super-allowed one with a precision similar to the previously reported measurements. The experiment was done at the Accelerator Laboratory of the University of Jyvaskyla where we used the IGISOL technique with the JYFLTRAP facility to separate pure samples of 26Si.

research product

High-precision mass measurements of 25Al and 30P at JYFLTRAP

The masses of the astrophysically relevant nuclei 25Al and 30P have been measured with a Penning trap for the first time. The mass-excess values for 25Al ( $\Delta = -8915.962(63)$ keV) and 30P ( $\Delta = -20200.854(64)$ keV) obtained with the JYFLTRAP double Penning trap mass spectrometer are in good agreement with the Atomic Mass Evaluation 2012 values but $ \approx$ 5-10 times more precise. A high precision is required for calculating resonant proton-capture rates of astrophysically important reactions 25Al (p, $ \gamma$ )26Si and 30P(p, $ \gamma$ )31S . In this work, $ Q_{(p,\gamma)} = 5513.99(13)$ keV and $ Q_{(p,\gamma)} = 6130.64(24)$ keV were obtained for 25Al and 30P , respectivel…

research product

Recent experiments at the JYFLTRAP Penning trap

AbstractThe JYFLTRAP double Penning trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility offers excellent possibilities for high-precision mass measurements of radioactive ions. Around 400 atomic masses, including around 50 isomeric states, have been measured since JYFLTRAP became operational. JYFLTRAP has also been used as a high-resolution mass separator for decay spectroscopy experiments as well as an ion counter for fission yield studies. In this contribution, an overview of recent activities at the JYFLTRAP Penning trap is given, with a focus on nuclei discussed in the PLATAN2019 meeting.

research product

Half-life, branching-ratio, andQ-value measurement for the superallowed0+→0+β+emitterTi42

The half-life, the branching ratio, and the decay $Q$ value of the superallowed $\ensuremath{\beta}$ emitter $^{42}\mathrm{Ti}$ were measured in an experiment performed at the JYFLTRAP facility of the Accelerator Laboratory of the University of Jyv\"askyl\"a. $^{42}\mathrm{Ti}$ is the heaviest ${T}_{z}=\ensuremath{-}1$ nucleus for which high-precision measurements of these quantities have been tried. The half-life (${T}_{1/2}=208.14\ifmmode\pm\else\textpm\fi{}0.45$ ms) and the $Q$ value [${Q}_{\mathrm{EC}}=7016.83(25)$ keV] are close to or reach the required precision of about 0.1%. The branching ratio for the superallowed decay branch [$\mathrm{BR}=47.7(12)%$], a by-product of the half-lif…

research product

Measurement of fission products β decay properties using a total absorption spectrometer

In a nuclear reactor, the decay of fission fragments is at the origin of decay heat and antineutrino flux. These quantities are not well known while they are very important for reactor safety and for our understanding of neutrino physics. One reason for the discrepancies observed in the estimation of the decay heat and antineutrinos flux coming from reactors could be linked with the Pandemonium effect. New measurements have been performed at the JYFL facility of Jyvaskyla with a Total Absorption Spectrometer (TAS) in order to circumvent this effect. An overview of the TAS technique and first results from the 2009 measurement campaign will be presented. © Owned by the authors, published by E…

research product

R-matrix analysis of theβdecays ofN12andB12

The β decays of 12N and 12B have been studied at KVI and JYFL to resolve the composition of the broad and interfering 0+ and 2+ strengths in the triple-α continuum. For the first time a complete treatment of 3α decay is presented including all major breakup channels. A multilevel, many-channel R-matrix formalism has been developed for the complete description of the breakup in combination with the recently published separate analysis of angular correlations. We find that, in addition to the Hoyle state at 7.65 MeV, more than one 0+ and 2+ state is needed to reproduce the spectra. Broad 03+ and 22+ states are found between 10.5 and 12 MeV in this work. The presence of β strength up to the 12…

research product

High-precision mass measurements for the rp-process at JYFLTRAP

The double Penning trap JYFLTRAP at the University of Jyvaskyla has been successfully used to achieve high-precision mass measurements of nuclei involved in the rapid proton-capture (rp) process. A precise mass measurement of 31 Cl is essential to estimate the waiting point condition of 30 S in the rp-process occurring in type I x-ray bursts (XRBs). The mass-excess of 31 C1 measured at JYFLTRAP, -7034.7(3.4) keV, is 15 more precise than the value given in the Atomic Mass Evaluation 2012. The proton separation energy S p determined from the new mass-excess value confirmed that 30 S is a waiting point, with a lower-temperature limit of 0.44 GK. The mass of 52 Co effects both 51 Fe( p,γ ) 52 C…

research product

Measurement of fission yields and isomeric yield ratios at IGISOL

Data on fission yields and isomeric yield ratios (IYR) are tools to study the fission process, in particular the generation of angular momentum. We use the IGISOL facility with the Penning trap JYFLTRAP in Jyväskylä, Finland, for such measurements on 232Th and natU targets. Previously published fission yield data from IGISOL concern the 232Th(p,f) and 238U(p,f) reactions at 25 and 50 MeV. Recently, a neutron source, using the Be(p,n) reaction, has been developed, installed and tested. We summarize the results for (p,f) focusing on the first measurement of IYR by direct ion counting. We also present first results for IYR and relative yields for Sn and Sb isotopes in the 128-133 mass range fr…

research product

β Decay of 127Cd and Excited States in 127In

A dedicated spectroscopic study of the β decay of 127Cd was conducted at the IGISOL facility at the University of Jyväskylä. Following high-resolution mass separation in a Penning trap, β−γ−γcoincidences were used to considerably extend the decay scheme of 127In. The β-decaying 3/2+ and 11/2− states in 127Cd have been identified with the 127Cd ground state and the 283-keV isomer. Their respective half-lives have been measured to 0.45(128)s and 0.36(4) s. The experimentally observed βfeeding to excited states of 127In and the decay scheme of 127In are discussed in conjunction with large-scale shell-model calculations. peerReviewed

research product

Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP

The JYFLTRAP double Penning trap at the Ion Guide Isotope Separator On-Line (IGISOL) facility has been used to measure the atomic masses of 13 neutron-rich rare-earth isotopes. Eight of the nuclides, $^{161}$Pm, $^{163}$Sm, $^{164,165}$Eu, $^{167}$Gd, and $^{165,167,168}$Tb, were measured for the first time. The systematics of the mass surface has been studied via one- and two-neutron separation energies as well as neutron pairing-gap and shell-gap energies. The proton-neutron pairing strength has also been investigated. The impact of the new mass values on the astrophysical rapid neutron capture process has been studied. The calculated abundance distribution results in a better agreement w…

research product

β-decay data requirements for reactor decay heat calculations: study of the possible source of the gamma-ray discrepancy in reactor heat summation calculations

The decay heat of fission products plays an important role in predictions of the heat up of nuclear fuel in reactors. The released energy is calculated as the summation of the activities of allfission products P(t) = Ei λi Ni(t), where Ei is the decay energy of nuclide i (gamma and beta component), λi is the decay constant of nuclide i and Ni(t) is the number of nuclide i at cooling time t. Even though the reproduction of the measured decay heat has improved in recent years, there is still a long standing discrepancy in the t ∼ 1000s cooling time for some fuels. A possible explanation to this improper description has been found in the work of Yoshida et al. (1), where it has been shown that…

research product

Q values of the 76Ge and 100Mo double-beta decays

Abstract Penning trap measurements using mixed beams of 76Ge–76Se and 100Mo–100Ru have been utilized to determine the double-beta decay Q-values of 76Ge and 100Mo with uncertainties less than 200 eV. The value for 76Ge, 2039.04(16) keV is in agreement with the published SMILETRAP value, 2039.006(50) keV. The new value for 100Mo, 3034.40(17) keV is 30 times more precise than the previous literature value, sufficient for the ongoing neutrinoless double-beta decay searches in 100Mo. Moreover, the precise Q-value is used to calculate the phase-space integrals and the experimental nuclear matrix element of double-beta decay.

research product

Decay of the key 92-keV resonance in the 25Mg(p,γ) reaction to the ground and isomeric states of the cosmic γ-ray emitter 26Al

Abstract The 92-keV resonance in the 25Mg ( p , γ ) 26 Al reaction plays a key role in the production of 26Al at astrophysical burning temperatures of ≈100 MK in the Mg-Al cycle. However, the state can decay to feed either the ground, 26 g Al, or isomeric state, 26 m Al. It is the ground state that is critical as the source of cosmic γ rays. It is therefore important to precisely determine the ground-state branching fraction f 0 of this resonance. Here we report on the identification of four γ-ray transitions from the 92-keV resonance, and determine the spin of the state and its ground-state branching fraction f 0 = 0.52 ( 2 ) s t a t ( 6 ) s y s t . The f 0 value is the most precise report…

research product

Independent isotopic yields in 25 MeV and 50 MeV proton-induced fission of natU

Independent isotopic yields for elements from Zn to La in the 25 MeV proton-induced fission of natUnatU were determined with the JYFLTRAP facility. In addition, isotopic yields for Zn, Ga, Rb, Sr, Zr, Pd and Xe in the 50 MeV proton-induced fission of natUnatU were measured. The deduced isotopic yield distributions are compared with a Rubchenya model, the GEF model with universal parameters and the semi-empirical Wahl model. Of these, the Rubchenya model gives the best overall agreement with the obtained data. Combining the isotopic yield data with mass yield data to obtain the absolute independent yields was attempted. The result depends on the mass yield distribution. peerReviewed

research product

Towards an Experimental Determination of the Transition Strength Between the Ground States of $^{20}$F and $^{20}$Ne

Electron capture on $^{20}$Ne is thought to play a crucial role in the final evolution of electron-degenerate ONe stellar cores. Recent calculations suggest that the capture process is dominated by the second-forbidden transition between the ground states of $^{20}$Ne and $^{20}$F, making an experimental determination of this transition strength highly desirable. To accomplish this task we are refurbishing an intermediate-image magnetic spectrometer capable of focusing 7 MeV electrons, and designing a scintillator detector surrounded by an active cosmic-ray veto shield, which will serve as an energy-dispersive device at the focal plane.

research product

Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra and Decay Heat Calculations

Beta decay of fission products is at the origin of decay heat and antineutrino emission in nuclear reactors. Decay heat represents about 7% of the reactor power during operation and strongly impacts reactor safety. Reactor antineutrino detection is used in several fundamental neutrino physics experiments and it can also be used for reactor monitoring and non-proliferation purposes. 92,93Rb are two fission products of importance in reactor antineutrino spectra and decay heat, but their β-decay properties are not well known. New measurements of 92,93Rb β-decay properties have been performed at the IGISOL facility (Jyväskylä, Finland) using Total Absorption Spectroscopy (TAS). TAS is complemen…

research product

Structure of115Ag studied byβ−decays of115Pd and115Pdm

The excited levels of ${}^{115}$Ag have been studied via the beta decay of ${}^{115}$Pd and ${}^{115}$Pd${}^{m}$. The beta-decay schemes for both states have been considerably extended, especially the scheme following the decay of ${}^{115}$Pd${}^{m}$ which was practically unknown before this work. Transition intensities and ${\mathrm{log}}_{10}ft$ values are reported, which have been missing in the literature. A set of levels around 2 MeV has been found to be strongly populated by the beta decay of the ground state of ${}^{115}$Pd and is suggested to have a three-quasiparticle nature. The properties of excited levels have been compared with the level systematics of lighter neutron-rich sil…

research product

Excited levels in the multishaped 117Pd nucleus studied via β decay of 117Rh

Monoisotopic samples of exotic, neutron-rich 117Rh nuclei, produced in the proton-induced fission of 238U and separated using the IGISOL mass separator coupled to the JYFLTRAP Penning trap, were used to perform β and γ coincidence spectroscopy of 117Pd. The spin parity of the ground state of 117Pd was determined to be 1/2+ and the 19.1 ms isomer at 203.2 keV was assigned a spin-parity 7/2−. The 117Rh β−-decay scheme was considerably extended, and various sequences of the levels were interpreted as resulting from the prolate, oblate, and triaxial nuclear shapes. Some of the β− decays were considered as the allowed Gamow-Teller transitions. The experimental distribution of Gamow-Teller streng…

research product

Ion traps in nuclear physics : recent results and achievements

Ion traps offer a way to determine nuclear binding energies through atomic mass measurements with a high accuracy and they are routinely used to provide isotopically or even isomerically pure beams of short-living ions for post-trap decay spectroscopy experiments. In this review, different ion-trapping techniques and progresses in recent nuclear physics experiments employing low-energy ion traps are discussed. The main focus in this review is on the benefit of recent high accuracy mass measurements to solve some key problems in physics related to nuclear structure, nuclear astrophysics as well as neutrinos. Also, several cases of decay spectroscopy experiments utilizing trap-purified ion sa…

research product

Precision mass measurements of neutron-rich yttrium and niobium isotopes

Abstract The atomic masses of neutron-rich 95–101 Y and 101–107 Nb produced in proton-induced fission of uranium were determined using the JYFLTRAP double Penning trap setup. Accuracies of better than 10 keV could be reached for most nuclides. The masses of 106,107 Nb were measured for the first time. The energies of the isomeric states in 96 Y and 100 Y were measured as 1541(10) keV and 145(15) keV. The niobium isotopes appear to be systematically less bound than the values given in the latest Atomic Mass Evaluation. The new data lie in a region of the nuclear chart characterised by the transition from spherical to strongly deformed shapes. These structural changes are explored by studying…

research product

Penning-trap-assisted study of 115Ru beta decay

The beta decay of 115Ru has been studied by means of Penning-trap-assisted beta and gamma spectroscopy at the IGISOL facility. The level scheme of 115Rh has been substantially extended and compared with the level systematics of lighter rhodium isotopes. Tentative candidates for three states of the deformed K = 1/2 band have been suggested. The beta-strength distribution of the beta decay of 115Ru differs from the beta decays of 111, 113, 113mRu isotopes due to non-observation of the 3-quasiparticle states in 115Rh. The decay properties of 115Ru indicate a spin-parity of (3/2+ for its beta-decaying ground state. In addition, possible Nilsson states as well as the shape and spin transitions i…

research product

Mass Measurements for the rp Process

One of the key parameters for the reaction network calculations for the rapid proton capture (rp) process, occurring e.g., in type I X-ray bursts, are the masses of the involved nuclei. Nowadays, masses of even rather exotic nuclei can be measured very precisely employing Penning-trap mass spectrometry. With the JYFLTRAP Penning trap at the IGISOL facility, masses of around 100 neutron-deficient nuclei have been determined with a typical precision of a few keV. Most recently, 25Al, 30P, 31Cl, and 52Co have been measured. Of these, the precision of the mass-excess value of 31Cl was improved from 50 to 3.4 keV, and the mass of 52Co was experimentally determined for the first time. The mass of…

research product

Impact of nuclear mass measurements in the vicinity of 132Sn on the r-process nucleosynthesis

Nuclear masses are a key aspect in the modelling of nuclear reaction rates for the r-process nucleosynthesis. High precision mass measurements drastically reduce the associated uncertainties in the modelling of r-process nucleosynthesis. We investigate the impact of nuclear mass uncertainties on neutron-capture rates calculations using a Hauser – Feshbach statistical code in the vicinity of 132Sn. Finally, we study the impact of the propagated neutron-capture reaction rates uncertainties on the r-process nucleosynthesis. We find that mass measurements with uncertainties higher than 20 keV affect the calculation of reaction rates. We also note that modelling of reaction rates can differ for …

research product

Mass Measurements and Implications for the Energy of the High-Spin Isomer inAg94

Nuclides in the vicinity of {sup 94}Ag have been studied with the Penning trap mass spectrometer JYFLTRAP at the Ion-Guide Isotope Separator On-Line. The masses of the two-proton-decay daughter {sup 92}Rh and the beta-decay daughter {sup 94}Pd of the high-spin isomer in {sup 94}Ag have been measured, and the masses of {sup 93}Pd and {sup 94}Ag have been deduced. When combined with the data from the one-proton- or two-proton-decay experiments, the results lead to contradictory mass excess values for the high-spin isomer in {sup 94}Ag, -46 370(170) or -44 970(100) keV, corresponding to excitation energies of 6960(400) or 8360(370) keV, respectively.

research product

Isomers of astrophysical interest in neutron-deficient nuclei at masses A = 81, 85 and 86

Decay properties of neutron-deficient exotic nuclei close to A=80 have been investigated at the IGISOL facility. The studied nuclei, 81Y, 81Sr, 81mKr, 85Nb, 85Zr, 86Mo and 86Nb, were produced by a 32S beam from the Jyväskylä isochronous cyclotron on 54Fe and natNi targets. The internal conversion coefficient for a 190.5 keV isomeric transition in 81mKr has been measured and the internal transition rate has been determined. The internal transition rate has been used to estimate a neutrino capture rate on 81Br, which yields a log ft of 5.13±0.09 for the reaction 81Br( ν, e-)81mKr. A new isomer with a half-life of 3.3±0.9 s has been observed in 85Nb. The existence of an earlier reported isomer…

research product

Excited states inPd115populated in theβ−decay ofRh115

Excited states in $^{115}\mathrm{Pd}$, populated following the ${\ensuremath{\beta}}^{\ensuremath{-}}$ decay of $^{115}\mathrm{Rh}$ have been studied by means of $\ensuremath{\gamma}$ spectroscopy after the Penning-trap station at the IGISOL facility, University of Jyv\"askyl\"a. The $1$$/$$2$${}^{+}$ spin and parity assignment of the ground state of $^{115}\mathrm{Pd}$, confirmed in this work, may indicate a transition to an oblate shape in Pd isotopes at high neutron number.

research product

The β-decay approach for studying 12C

6 pags., 3 figs. -- 9th International Conference on Clustering Aspects of Nuclear Structure and Dynamics (CLUSTERS'07) 3–7 September 2007, Stratford upon Avon, UK

research product

Shape coexistence in the odd-odd nucleus 98Y : the role of the g9/2 neutron extruder

Excited states in 98Y, populated in neutron-induced fission of 235U and in spontaneous fission of 248Cm and 252Cf, have been studied by means of γ spectroscopy using the Lohengrin fission-fragment separator at ILL Grenoble and the EXILL, Eurogam2, and Gammasphere Ge arrays. Two new isomers have been found in 98Y: a deformed one with T1/2 = 180(7) ns and a rotational band on top of it, and a spherical one with T1/2 = 0.45(15)μs, analogous to the 8+ isomer in 96Y, corresponding to the (νg7/2,πg9/2)8+ spherical configuration. Using the JYFLTRAP Penning trap, an accurate excitation energy of 465.7(7) keV has been determined for the 2.36-s isomer in 98Y. This result and the studies of excited le…

research product

A new off-line ion source facility at IGISOL

An off-line ion source station has been commissioned at the IGISOL (Ion Guide Isotope Separator On-Line) facility. It offers the infrastructure needed to produce stable ion beams from three off-line ion sources in parallel with the radioactive ion beams produced from the IGISOL target chamber. This has resulted in improved feasibility for new experiments by offering reference ions for Penning-trap mass measurements, laser spectroscopy and atom trap experiments.

research product

Reactor Decay Heat inPu239: Solving theγDiscrepancy in the 4–3000-s Cooling Period

The {beta} feeding probability of {sup 102,104,105,106,107}Tc, {sup 105}Mo, and {sup 101}Nb nuclei, which are important contributors to the decay heat in nuclear reactors, has been measured using the total absorption technique. We have coupled for the first time a total absorption spectrometer to a Penning trap in order to obtain sources of very high isobaric purity. Our results solve a significant part of a long-standing discrepancy in the {gamma} component of the decay heat for {sup 239}Pu in the 4-3000 s range.

research product

High-accuracy mass spectrometry of fission products with Penning traps

Mass measurements of fission products based on Penning-trap technique are reviewed in this article. More than 300 fission products have been measured with JYFLTRAP, ISOLTRAP, CPT, LEBIT and TITAN Penning traps with a typical precision of δm/m ≈ 10−7 − 10−8. In general, the results agree well with each other. The new data provide a valuable source of information and a challenge for the future development of theoretical mass models as well as for obtaining a deeper insight into microscopic properties of atomic nuclei as measured, for example, via key mass differentials. Shape transitions around N = 60, subshell closure at N = 40 and shell closures at N = 50 and N = 82 have been investigated i…

research product

New Beta-delayed Neutron Measurements in the Light-mass Fission Group

A new accurate determination of beta-delayed neutron emission probabilities from nuclei in the low mass region of the light fission group has been performed. The measurements were carried out using the BELEN 4π neutron counter at the IGISOL-JYFL mass separator in combination with a Penning trap. The new results significantly improve the uncertainties of neutron emission probabilities for {sup 91}Br, {sup 86}As, {sup 85}As, and {sup 85}Ge nuclei.

research product

High-precision mass measurements and production of neutron-deficient isotopes using heavy-ion beams at IGISOL

An upgraded ion-guide system for the production of neutron-deficient isotopes with heavy-ion beams has been commissioned at the IGISOL facility with an $^{36}\mathrm{Ar}$ beam on a $^{\mathrm{nat}}\mathrm{Ni}$ target. It was used together with the JYFLTRAP double Penning trap to measure the masses of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}, ^{86}\mathrm{Mo}, ^{88}\mathrm{Tc}$, and $^{89}\mathrm{Ru}$ ground states and the isomeric state $^{88}\mathrm{Tc}^{m}$. Of these, $^{89}\mathrm{Ru}$ and $^{88}\mathrm{Tc}^{m}$ were measured for the first time. The precision of measurements of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}$, and $^{88}\mathrm{Tc}$ was significantly improved. The literature value for $^…

research product

QValues of the SuperallowedβEmittersAlm26,Sc42, andV46and Their Impact onVudand the Unitarity of the Cabibbo-Kobayashi-Maskawa Matrix

The $\ensuremath{\beta}$-decay ${Q}_{\mathrm{EC}}$ values of the superallowed beta emitters $^{26}\mathrm{Al}^{m}$, $^{42}\mathrm{Sc}$, and $^{46}\mathrm{V}$ have been measured with a Penning trap to a relative precision of better than $8\ifmmode\times\else\texttimes\fi{}{10}^{\ensuremath{-}9}$. Our result for $^{46}\mathrm{V}$, 7052.72(31) keV, confirms a recent measurement that differed from the previously accepted reaction-based ${Q}_{\mathrm{EC}}$ value. However, our results for $^{26}\mathrm{Al}^{m}$ and $^{42}\mathrm{Sc}$, 4232.83(13) keV and 6426.13(21) keV, are consistent with previous reaction-based values. By eliminating the possibility of a systematic difference between the two t…

research product

Fission studies at IGISOL/JYFLTRAP: Simulations of the ion guide for neutron-induced fission and comparison with experimental data

For the production of exotic nuclei at the IGISOL facility, an ion guide for neutron-induced fission has been developed and tested in experiments. Fission fragments are produced inside the ion guide and collected using a helium buffer gas. Meanwhile, a GEANT4 model has been developed to simulate the transportation and stopping of the charged fission products. In a recent measurement of neutron-induced fission yields, implantation foils were located at different positions in the ion guide. The gamma spectra from these foils and the fission targets are compared to the results from the GEANT4 simulation. In order to allow fission yield measurements in the low yield regions, towards the tails a…

research product

Quenching of the SnSbTe Cycle in the rp-Process

research product

First β -decay scheme of Nb107 : New insight into the low-energy levels of Mo107

Monoisotopic samples of $^{107}\mathrm{Nb}$ nuclei, produced in the proton-induced fission of $^{238}\mathrm{U}$ and separated using the IGISOL mass separator coupled to a Penning trap, were used to perform $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-coincidence spectroscopy of $^{107}\mathrm{Mo}$. Gamma transitions and excited levels in $^{107}\mathrm{Mo}$ were observed in $\ensuremath{\beta}$ decay for the first time. Spin and parity $1/{2}^{+}$ for the ground state of $^{107}\mathrm{Mo}$ is proposed, to replace the previous $5/{2}^{+}$ assignment. The experimental $\ensuremath{\beta}$-decay half-life of $^{107}\mathrm{Nb}$ was estimated to be $0.27\ifmmode\pm\else\textpm\fi{}0.02$ s.

research product

Influences on the triple alpha process beyond the Hoyle state

7 pags., 3 figs. -- International Symposium on Nuclear Astrophysics - Nuclei in the Cosmos - IX, 25-30 June 2006, CERN

research product

First evidence of multiple β-delayed neutron emission for isotopes with a > 100

The β-delayed neutron emission probability, Pn, of very neutron-rich nuclei allows us to achieve a better understanding of the nuclear structure above the neutron separation energy, Sn. The emission of neutrons can become the dominant decay process in neutron-rich astrophysical phenomena such as the rapid neutron capture process (r-process). There are around 600 accessible isotopes for which β-delayed one-neutron emission (β1n) is energetically allowed, but the branching ratio has only been determined for about one third of them. β1n decays have been experimentally measured up to the mass A ∼ 150, plus a single measurement of 210Tl. Concerning two-neutron emitters (β2n), ∼ 300 isotopes are …

research product

Total Absorption Spectroscopy of Fission Fragments Relevant for Reactor Antineutrino Spectra Determination

8 pags., 3 figs., 1 tab. ; Presented at the XXXIV Mazurian Lakes Conference on Physics, Piaski, Poland, September 6–13, 2015.

research product

Precision Mass Measurements beyondSn132: Anomalous Behavior of Odd-Even Staggering of Binding Energies

Atomic masses of the neutron-rich isotopes $^{121--128}\mathrm{Cd}$, $^{129,131}\mathrm{In}$, $^{130--135}\mathrm{Sn}$, $^{131--136}\mathrm{Sb}$, and $^{132--140}\mathrm{Te}$ have been measured with high precision (10 ppb) using the Penning-trap mass spectrometer JYFLTRAP. Among these, the masses of four $r$-process nuclei $^{135}\mathrm{Sn}$, $^{136}\mathrm{Sb}$, and $^{139,140}\mathrm{Te}$ were measured for the first time. An empirical neutron pairing gap expressed as the odd-even staggering of isotopic masses shows a strong quenching across $N=82$ for Sn, with a $Z$ dependence that is unexplainable by the current theoretical models.

research product

Systematic studies of the accuracy of the Penning trap mass spectrometer JYFLTRAP

Abstract Measurements to quantify the mass-dependent systematic effect and the residual uncertainty of the JYFLTRAP setup have been performed with carbon-cluster ions. The primary quantities reported in this work are a mass-dependent uncertainty of σ m ( r ) / r = ( 7.8 ± 0.3 × 10 - 10 / u ) × Δ m and a residual uncertainty of σ res ( r ) / r = 1.2 × 10 - 8 for the JYFLTRAP mass spectrometer. By restricting the mass difference between the reference ion and ion of interest to | m meas - m ref | ≤ 24 , the values for the mass-dependent effect and the corresponding residual uncertainty are σ m , lim ( r ) / r = ( 7.5 ± 0.4 × 10 - 10 / u ) × Δ m and σ res , lim ( r ) / r = 7.9 × 10 - 9 , respec…

research product

Precise branching ratios to unbound 12C states from 12N and 12B β-decays

6 pages, 2 tables, 4 figures.--PACS nrs.: 21.45.-v; 23.40.-s; 27.20.+n; 21.60.De.--Printed version published Aug 3, 2009

research product

r Process (n, γ) Rate Constraints from the γ Emission of Neutron Unbound States in β decay

Total absorption gamma-ray spectroscopy is used to measure accurately the intensity of γγ emission from neutron-unbound states populated in the ββ-decay of delayed-neutron emitters. From the comparison of this intensity with the intensity of neutron emission a constraint on the (n, γγ) cross section for highly unstable neutron-rich nuclei can be deduced. A surprisingly large γγ branching was observed for a number of isotopes which might indicate the need to increase by a large factor the Hauser-Feshbach (n, γγ) cross-section estimates that impact on r process abundance calculations. peerReviewed

research product

Total Absorption Spectroscopy Study ofRb92Decay: A Major Contributor to Reactor Antineutrino Spectrum Shape

The antineutrino spectra measured in recent experiments at reactors are inconsistent with calculations based on the conversion of integral beta spectra recorded at the ILL reactor. (92)Rb makes the dominant contribution to the reactor antineutrino spectrum in the 5-8 MeV range but its decay properties are in question. We have studied (92)Rb decay with total absorption spectroscopy. Previously unobserved beta feeding was seen in the 4.5-5.5 region and the GS to GS feeding was found to be 87.5(25)%. The impact on the reactor antineutrino spectra calculated with the summation method is shown and discussed.

research product

Mass of astrophysically relevantCl31and the breakdown of the isobaric multiplet mass equation

The mass of $^{31}\mathrm{Cl}$ has been measured with the JYFLTRAP double-Penning-trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility. The determined mass-excess value, $\ensuremath{-}7034.7(34)$ keV, is 15 times more precise than in the Atomic Mass Evaluation 2012. The quadratic form of the isobaric multiplet mass equation for the $T=3/2$ quartet at $A=31$ fails $({\ensuremath{\chi}}_{n}^{2}=11.6)$ and a nonzero cubic term, $d=\ensuremath{-}3.5(11)$ keV, is obtained when the new mass value is adopted. $^{31}\mathrm{Cl}$ has been found to be less proton-bound, with a proton separation energy of ${S}_{p}=264.6(34)$ keV. Energies for the excited states in $^{31…

research product

Recent mass measurements for the r process at JYFLTRAP

research product

Mass Measurements for the rp Process

research product

Excited levels in the multishaped Pd117 nucleus studied via β decay of Rh117

Monoisotopic samples of exotic, neutron-rich $^{117}\mathrm{Rh}$ nuclei, produced in the proton-induced fission of $^{238}\mathrm{U}$ and separated using the IGISOL mass separator coupled to the JYFLTRAP Penning trap, were used to perform $\ensuremath{\beta}$ and $\ensuremath{\gamma}$ coincidence spectroscopy of $^{117}\mathrm{Pd}$. The spin parity of the ground state of $^{117}\mathrm{Pd}$ was determined to be $1/{2}^{+}$ and the 19.1 ms isomer at 203.2 keV was assigned a spin-parity $7/{2}^{\ensuremath{-}}$. The $^{117}\mathrm{Rh}$ ${\ensuremath{\beta}}^{\ensuremath{-}}$-decay scheme was considerably extended, and various sequences of the levels were interpreted as resulting from the prol…

research product

Summation Calculations for Reactor Antineutrino Spectra, Decay Heat and Delayed Neutron Fractions Involving New TAGS Data and Evaluated Databases

9 pags., 3 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0

research product

Improvements on Decay Heat Summation Calculations by Means of Total Absorption Gamma-ray Spectroscopy Measurements

The decay heat of fission products plays an important role in predictions of the heat released by nuclear fuel in reactors. In this contribution we present results of the analysis of the measurement of the beta decay of some refractory isotopes that were considered possible important contributors to the decay heat in reactors. The measurements presented here were performed at the IGISOL facility of the University of Jyvaeskylae, Finland. In our measurements we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat sum…

research product

β-decay ofO13

The beta decay of O-13 has been studied at the IGISOL facility of the Jyvaskyla accelerator centre (Finland). By developing a low-energy isotope-separated beam of O-13 and using a modern segmented charged-particle detector array an improved measurement of the delayed proton spectrum was possible. Protons with energy up to more than 12 MeV are measured and the corresponding log(ft) values extracted. A revised decay scheme is constructed. The connection to molecular states and the shell model is discussed.

research product

Production of Sn and Sb isotopes in high-energy neutron induced fission of natU

The first systematic measurement of neutron-induced fission yields has been performed at the upgraded IGISOL-4 facility at the University of Jyväskylä, Finland. The fission products from high-energy neutron-induced fission of nat U were stopped in a gas cell filled with helium buffer gas, and were online separated with a dipole magnet. The isobars, with masses in the range A = 128-133 , were transported to a tape-implantation station and identified using γ -spectroscopy. We report here the relative cumulative isotopic yields of tin (Z = 50) and the relative independent isotopic yields of antimony (Z = 51). Isomeric yield ratios were also obtained for five nuclides. The yields of tin show a …

research product

Masses of neutron-rich Ni and Cu isotopes and the shell closure at Z = 28 , N = 40

The Penning trap mass spectrometer JYFLTRAP, coupled to the Ion Guide Isotope Separator On-Line (IGISOL) facility at Jyvaskyla, was employed to measure the atomic masses of neutron-rich 70-73Ni and 73, 75Cu isotopes with a typical accuracy less than 5keV. The mass of 73Ni was measured for the first time. Comparisons with the previous data are discussed. Two-neutron separation energies show a weak subshell closure at 68 28Ni40 . A well established proton shell gap is observed at Z = 28 .

research product

Coulomb displacement energies as a probe for nucleon pairing in the $f_{7/2}$ shell

Coulomb displacement energies of $T=1/2$ mirror nuclei have been studied via a series of high-precision $Q_\mathrm{EC}$-value measurements with the double Penning trap mass spectrometer JYFLTRAP. Most recently, the $Q_\mathrm{EC}$ values of the $f_{7/2}$-shell mirror nuclei $^{45}$V ($Q_\mathrm{EC}=7123.82(22)$ keV) and $^{49}$Mn ($Q_\mathrm{EC}=7712.42(24)$ keV) have been measured with an unprecedented precision. The data reveal a 16-keV ($1.6\sigma$) offset in the adopted Atomic Mass Evaluation 2012 value of $^{49}$Mn suggesting the need for further measurements to verify the breakdown of the quadratic form of the isobaric multiplet mass equation. Precisely measured $Q_\mathrm{EC}$ values…

research product

Preparing isomerically pure beams of short-lived nuclei at JYFLTRAP

A new procedure to prepare isomerically clean samples of ions with a mass resolving power of more than 100,000 has been developed at the JYFLTRAP tandem Penning trap system. The method utilises a dipolar rf-excitation of the ion motion with separated oscillatory fields in the precision trap. During a subsequent retransfer to the purification trap, the contaminants are rejected and as a consequence, the remaining bunch is isomerically cleaned. This newly-developed method is suitable for very high-resolution cleaning and is at least a factor of five faster than the methods used so far in Penning trap mass spectrometry.

research product

Evidence of a sudden increase in the nuclear size of proton-rich silver-96

Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with th…

research product

LUKIOLAISTEN MOTIVAATIO OPISKELLA FYSIIKKAA: ONKO TÄSSÄ EROJA MIESTEN JA NAISTEN VÄLILLÄ?

Viime vuosina fysiikan ylioppilaskirjoituksiin ilmoittautuneiden määrä on lähes kaksinkertaistunut ja naisten suhteellinen osuus kasvanut. Aiemmasta tutkimuksesta tiedetään, että motivaatio opiskella fysiikkaa on sukupuolittunutta. Tässä tutkimuksessa selvitettiin lukiolaisten motivaatiota fysiikan opiskeluun ja mahdollisia sukupuolten välisiä eroja. Tutkimus toteutettiin kyselytutkimuksena fysiikan syventäviä kursseja opiskeleville. Keskimäärin miesten sisäinen motivaatio opiskella fysiikkaa ja koettu fysiikan välinearvo olivat korkeampia kuin naisilla. Fysiikan opiskelun kustannuksissa tai fysiikkaan liittyvissä kykyuskomuksissa ei ollut eroja sukupuolten välillä. Avok…

research product

FRIB and the GW170817 Kilonova

In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation of the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.

research product

Characterization and performance of the DTAS detector

11 pags., 16 figs., 3 tabs.

research product

The MORA project

The MORA (Matter's Origin from the RadioActivity of trapped and oriented ions) project aims at measuring with unprecedented precision the D correlation in the nuclear beta decay of trapped and oriented ions. The D correlation offers the possibility to search for new CP-violating interactions, complementary to searches done at the LHC and with Electric Dipole Moments. Technically, MORA uses an innovative in-trap orientation method which combines the high trapping efficiency of a transparent Paul trap with laser orientation techniques. The trapping, detection, and laser setups are under development, for first tests at the Accelerator laboratory, JYFL, in the coming years.

research product

Precision 71Ga – 71Ge mass-difference measurement

The 71Ga(νe, e−) 71Ge reaction Q value has been measured with the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyv¨askyl¨a to Q = 232.443(93) keV. This value agrees with previous measurements, though it features a much higher accuracy. The Q value is being discussed in the context of the solar neutrino capture rate in 71Ga. peerReviewed

research product

Branching ratios in theβdecays ofN12andB12

Absolute branching ratios to unbound states in C-12 populated in the beta decays of N-12 and B-12 are reported. Clean sources of N-12 and B-12 were obtained using the isotope separation on-line (ISOL) method. The relative branching ratios to the different populated states were extracted using single-alpha as well as complete kinematics triple-alpha spectra. These two largely independent methods give consistent results. Absolute normalization is achieved via the precisely known absolute branching ratio to the bound 4.44 MeV state in C-12. The extracted branching ratios to the unbound states are a factor of three more precise than previous measurements. Branching ratios in the decay of Na-20 …

research product

Breakup channels forC12triple-αcontinuum states

The triple-alpha-particle breakup of states in the triple-alpha continuum of C-12 has been investigated by way of coincident detection of all three alpha particles of the breakup. The states have been fed in the beta decay of N-12 and B-12, and the alpha particles measured using a setup that covers all of the triple-alpha phase space. Contributions from the breakup through the Be-8(0(+)) ground state as well as other channels-interpreted as breakup through excited energies in Be-8-have been identified. Spins and parities of C-12 triple-alpha continuum states are deduced from the measured phase-space distributions for breakup through Be-8 above the ground state by comparison to a fully symme…

research product

Double-beta decay Q values of 116Cd and 130Te

Abstract The Q values of the 116Cd and 130Te double-beta decaying nuclei were determined by using a Penning trap mass spectrometer. The new atomic mass difference between 116Cd and 116Sn of 2813.50(13) keV differs by 4.5 keV and is 30 times more precise than the previous value of 2809(4) keV. The new value for 130Te, 2526.97(23) keV is close to the Canadian Penning trap value of 2527.01 ± 0.32 keV (Scielzo et al., 2009) [1] , but differs from the Florida State University trap value of 2527.518 ± 0.013 keV (Redshaw et al., 2009) [2] by 0.55 keV (2σ). These values are sufficiently precise for ongoing neutrinoless double-beta decay searches in 116Cd and 130Te. Hence, our Q values were used to …

research product

Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer

The Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) technique has been commissioned at the JYFLTRAP double Penning trap mass spectrometer. This technique is based on projecting the ion motion in the Penning trap onto a position-sensitive multichannel-plate ion detector. Mass measurements of stable 85 Rb $ ^{+}$ and 87 Rb $ ^{+}$ ions with well-known mass values show that relative uncertainties $ \Delta m/m \leq 7\cdot 10^{-10}$ are possible to reach with the PI-ICR technique at JYFLTRAP. The significant improvement both in resolving power and in precision compared to the conventional Time-of-Flight Ion Cyclotron Resonance technique will enable measurements of close-lying isomeric states and …

research product

QECvalues of the superallowedβemittersC10,Ar34,Ca38, andV46

The ${Q}_{\mathrm{EC}}$ values of the superallowed ${\ensuremath{\beta}}^{+}$ emitters $^{10}\mathrm{C}$, $^{34}\mathrm{Ar}$, $^{38}\mathrm{Ca}$, and $^{46}\mathrm{V}$ have been measured with the JYFLTRAP Penning-trap mass spectrometer to be 3648.12(8), 6061.83(8), 6612.12(7), and 7052.44(10) keV, respectively. All four values are substantially improved in precision over previous results. Of the well-known superallowed emitters, only $^{14}\mathrm{O}$ has yet to have had its ${Q}_{\mathrm{EC}}$ value measured with a Penning trap.

research product

First experiment with the NUSTAR/FAIR Decay Total Absorption γ-Ray Spectrometer (DTAS) at the IGISOL IV facility

V. Guadilla et al. ; 4 págs.; 4 figs.; 1 tab.

research product

Mass measurements of neutron-deficient nuclides close to A=80 with a Penning trap

The masses of 80,81,82,83Y, 83,84,85,86,88Zr and 85,86,87,88Nb have been measured with a typical precision of 7 keV by using the Penning trap setup at IGISOL. The mass of 84Zr has been measured for the first time. These precise mass measurements have improved Sp and QEC values for astrophysically important nuclides. peerReviewed

research product

JYFLTRAP: a Penning trap for precision mass spectroscopy and isobaric purification

In this article a comprehensive description and performance of the double Penning-trap setup JYFLTRAP will be detailed. The setup is designed for atomic mass measurements of both radioactive and stable ions and additionally serves as a very high-resolution mass separator. The setup is coupled to the IGISOL facility at the accelerator laboratory of the University of Jyväskylä. The trap has been online since 2003 and it was shut down in the summer of 2010 for relocation to the upgraded IGISOL facility. Numerous atomic mass and decay energy measurements have been performed using the time-of-flight ion-cyclotron resonance technique. The trap has also been used in several decay spectroscopy expe…

research product

The science case of the FRS Ion Catcher for FAIR Phase-0

The FRS Ion Catcher at GSI enables precision experiments with thermalized projectile and fission fragments. At the same time it serves as a test facility for the Low-Energy Branch of the Super-FRS at FAIR. The FRS Ion Catcher has been commissioned and its performance has been characterized in five experiments with 238U and 124Xe projectile and fission fragments produced at energies in the range from 300 to 1000 MeV/u. High and almost element-independent efficiencies for the thermalization of short-lived nuclides produced at relativistic energies have been obtained. High-accuracy mass measurements of more than 30 projectile and fission fragments have been performed with a multiple-reflection…

research product

Characterization of a cylindrical plastic {\beta}-detector with Monte Carlo simulations of optical photons

V. Guadilla et al. -- 5 pags., 8 figs., tab.

research product

Direct measurement of the mass difference of As72−Ge72 rules out As72 as a promising β -decay candidate to determine the neutrino mass

We report the first direct determination of the ground-state to ground-state electron-capture $Q$ value for the $^{72}\mathrm{As}$ to $^{72}\mathrm{Ge}$ decay by measuring their atomic mass difference utilizing the double Penning trap mass spectrometer, JYFLTRAP. The $Q$ value was measured to be 4343.596(75) keV, which is more than a fiftyfold improvement in precision compared to the value in the most recent Atomic Mass Evaluation 2020. Furthermore, the new $Q$ value was found to be 12.4(40) keV (3.1 $\ensuremath{\sigma}$) lower. With the significant reduction of the uncertainty of the ground-state to ground-state $Q$ value combined with the level scheme of $^{72}\mathrm{Ge}$ from $\ensurem…

research product

Optimization of krypton yields for rp-process studies at ISOLDE(CERN)

The production of neutron-deficient krypton isotopes having astrophysical importance has been studied at the ISOLDE PBS facility at CERN. To investigate several effects on the yield a Monte Carlo code has been extensively applied.

research product

Trap-assisted separation of nuclear states for gamma-ray spectroscopy: the example of100Nb

Low-lying levels in 100Mo are known to be populated by beta decay from both the ground and isomeric states in 100Nb. The small energy difference (~3 ppm) between the two parent states and the similarity of their half-lives make it difficult to distinguish experimentally between the two decay paths. A new technique for separating different states of nuclei has recently been developed in a series of experiments at the IGISOL facility, using the JYFLTRAP installation, at the University of Jyvaskyla where mass resolution ~2 ppm was achieved in mass measurements and in the production of 133mXe. This paper reports on the extension of this technique to allow the separate study of the gamma-ray dec…

research product

Isomeric fission yield ratios for odd-mass Cd and In isotopes using the Phase-Imaging Ion-Cyclotron-Resonance technique

Isomeric yield ratios for the odd-$A$ isotopes of $^{119-127}$Cd and $^{119-127}$In from 25-MeV proton-induced fission on natural uranium have been measured at the JYFLTRAP double Penning trap, by employing the Phase-Imaging Ion-Cyclotron-Resonance technique. With the significantly improved mass resolution of this novel method isomeric states separated by 140 keV from the ground state, and with half-lives of the order of 500 ms, could be resolved. This opens the door for obtaining new information on low-lying isomers, of importance for nuclear structure, fission and astrophysics. In the present work the experimental isomeric yield ratios are used for the estimation of the root-mean-square a…

research product

Single-particle shell strengths near the doubly magic nucleus 56Ni and the 56Ni(p,γ)57Cu reaction rate in explosive astrophysical burning

Angle-integrated cross-section measurements of the $^{56}$Ni(d,n) and (d,p) stripping reactions have been performed to determine the single-particle strengths of low-lying excited states in the mirror nuclei pair $^{57}$Cu-$^{57}$Ni situated adjacent to the doubly magic nucleus $^{56}$Ni. The reactions were studied in inverse kinematics utilizing a beam of radioactive $^{56}$Ni ions in conjunction with the GRETINA $\gamma$-array. Spectroscopic factors are compared with new shell-model calculations using a full $pf$ model space with the GPFX1A Hamiltonian for the isospin-conserving strong interaction plus Coulomb and charge-dependent Hamiltonians. These results were used to set new constrain…

research product

Large Impact of the Decay of Niobium Isomers on the Reactor ν¯e Summation Calculations

Even mass neutron-rich niobium isotopes are among the principal contributors to the reactor antineutrino energy spectrum. They are also among the most challenging to measure due to the refractory nature of niobium, and because they exhibit isomeric states lying very close in energy. The beta-intensity distributions of Nb-100gs,Nb-100m and Nb-102gs,Nb-02m beta decays have been determined using the total absorption.-ray spectroscopy technique. The measurements were performed at the upgraded Ion Guide Isotope Separator On-Line facility at the University of Jyvaskyla. Here, the double Penning trap system JYFLTRAP was employed to disentangle the beta decay of the isomeric states. The new data ob…

research product

Measurement of the 2+→0+ ground-state transition in the β decay of F20

We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of F20. A low-energy, mass-separated F+20 beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10-5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…

research product

Total absorption study of theβdecay of102,104,105Tc

The $\ensuremath{\beta}$-feeding probabilities for three important contributors to the decay heat in nuclear reactors, namely ${}^{102,104,105}$Tc, have been measured using the total absorption spectroscopy technique. For the measurements, sources of very high isobaric purity have been obtained using a Penning trap (JYFLTRAP). A detailed description of the data analysis is given and the results are compared with high-resolution measurements and theoretical calculations.

research product

TAGS measurements of $^{100}$Nb ground and isomeric states and $^{140}$Cs for neutrino physics with the new DTAS detector

V. Guadilla et al. -- 4 pags., 6 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0

research product

QEC value of the superallowed β emitter 42Sc

The QEC value of the superallowed β+ emitter Sc42 has been measured with the JYFLTRAP Penning-trap mass spectrometer at the University of Jyväskylä to be 6426.350(53) keV. This result is at least a factor of four more precise than all previous measurements, which were also inconsistent with one another. As a byproduct we determine the excitation energy of the 7+ isomeric state in Sc42 to be 616.762(46) keV, which deviates by 8σ from the previous measurement. peerReviewed

research product

New isomer and decay half-life ofRu115

Exotic, neutron-rich nuclei of mass $A=115$ produced in proton-induced fission of $^{238}\mathrm{U}$ were extracted using the IGISOL mass separator. The beam of isobars was transferred to the JYFLTRAP Penning trap system for further separation to the isotopic level. Monoisotopic samples of $^{115}\mathrm{Ru}$ nuclei were used for $\ensuremath{\gamma}$and $\ensuremath{\beta}$ coincidence spectroscopy. In $^{115}\mathrm{Ru}$ we have observed excited levels, including an isomer with a half-life of 76(6) ms and ($7/{2}^{\ensuremath{-}}$) spin and parity. The first excited 61.7-keV level in $^{115}\mathrm{Ru}$ with spins and parity ($3/{2}^{+}$) may correspond to an $\mathit{oblate}$ $3/{2}^{+}$…

research product

QEC value of the superallowed β emitter Sc42

Precise measurements of superallowed ${0}^{+}\ensuremath{\rightarrow}{0}^{+}$ $\ensuremath{\beta}$ decay presently provide the most precise value for the weak mixing amplitude ${V}_{u\phantom{\rule{0}{0ex}}d}$. As the largest element of the CKM matrix, ${V}_{u\phantom{\rule{0}{0ex}}d}$ is a critical piece of the Standard Model of the electroweak interaction. The new, precise Penning-trap mass measurement of the decay energy for the superallowed transition in ${}^{42}$Sc opens the door for a much more precise $f\phantom{\rule{0}{0ex}}t$ value determination if its half-life can be measured more precisely as well.

research product

Women Scientists Who Made Nuclear Astrophysics

Female role models reduce the impact on women of stereotype threat, i.e. of being at risk of conforming to a negative stereotype about one’s social, gender, or racial group (Fine in Delusion of Gender. W.W. Norton & Co. NY, p. 36, 2010 [1]; Steele and Aronson in J Pers Soc Psychol 69:797–811, 1995 [2]). This can lead women scientists to underperform or to leave their scientific career because of negative stereotypes such as, not being as talented or as interested in science as men. Sadly, history rarely provides role models for women scientists; instead, it often renders these women invisible (CafeBabel Homepage [3]). In response to this situation, we present a selection of twelve outst…

research product

Decays of T Z = − 3/2 nuclei 23Al, 31Cl, and 41Ti

This article gives an overview on the decay spectroscopy of T Z  = − 3/2 nuclei 23Al, 31Cl, and 41Ti performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility. The results of the IGISOL experiments are compared to the experimental results that have been published since. The isobaric multiplet mass equation (IMME) has been studied for the T = 3/2 quartets at A = 23 and A = 31. For 41Ti, a detailed comparison to the Gamow–Teller strengths obtained for the analog transitions via charge-exchange reactions has been done. Further improvements in the experimental instrumentation and methods and possible implementations for studying T Z  = − 3/2 nuclei at the new IGISOL facility are di…

research product

AccurateQValue for theSn112Double-βDecay and its Implication for the Search of the Neutrino Mass

The $Q$ value of the $^{112}\mathrm{Sn}$ double-beta decay was determined by using a Penning trap mass spectrometer. The new atomic-mass difference between $^{112}\mathrm{Sn}$ and $^{112}\mathrm{Cd}$ of 1919.82(16) keV is 25 times more precise than the previous value of 1919(4) keV. This result removes the possibility of enhanced resonance capture of the neutrinoless double-EC decay to the excited ${0}^{+}$ state at 1871.00(19) keV in $^{112}\mathrm{Cd}$.

research product

Quenching of the SnSbTe Cycle in therpProcess

The nuclides 104-108Sn, 106-110Sb, 108,109Te, and 111I at the expected endpoint of the astrophysical rp process have been produced in 58Ni+natNi fusion-evaporation reactions at IGISOL and their mass values were precisely measured with the JYFLTRAP Penning trap mass spectrometer. For 106Sb, 108Sb, and 110Sb these are the first direct experimental mass results obtained. The related one-proton separation energies have been derived and the value for 106Sb, Sp=424(8) keV, shows that the branching into the closed SnSbTe cycle in the astrophysical rp process is weaker than expected.

research product

Mass measurements of As, Se, and Br nuclei, and their implication on the proton-neutron interaction strength toward the N=Z line

Mass measurements of the $^{69}$As, $^{70,71}$Se and $^{71}$Br isotopes, produced via fragmentation of a $^{124}$Xe primary beam at the FRS at GSI, have been performed with the multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) of the FRS Ion Catcher with an unprecedented mass resolving power of almost 1,000,000. For the $^{69}$As isotope, this is the first direct mass measurement. A mass uncertainty of 22 keV was achieved with only 10 events. For the $^{70}$Se isotope, a mass uncertainty of 2.6 keV was obtained, corresponding to a relative accuracy of $\delta$m/m = 4.0$\times 10^{-8}$, with less than 500 events. The masses of the $^{71}$Se and $^{71}$Br isotopes were measured…

research product

Disentangling decaying isomers and searching for signatures of collective excitations in β decay

6 pags., 3 figs., 1 tab. -- 27th International Nuclear Physics Conference (INPC2019) 29 July - 2 August 2019, Glasgow, UK

research product

New constraints on the Al25(p,γ) reaction and its influence on the flux of cosmic γ rays from classical nova explosions

The astrophysical $^{25}\mathrm{Al}(p,\ensuremath{\gamma})\phantom{\rule{0.16em}{0ex}}^{26}\mathrm{Si}$ reaction represents one of the key remaining uncertainties in accurately modeling the abundance of radiogenic $^{26}\mathrm{Al}$ ejected from classical novae. Specifically, the strengths of key proton-unbound resonances in $^{26}\mathrm{Si}$, that govern the rate of the $^{25}\mathrm{Al}(p,\ensuremath{\gamma})$ reaction under explosive astrophysical conditions, remain unsettled. Here, we present a detailed spectroscopy study of the $^{26}\mathrm{Si}$ mirror nucleus $^{26}\mathrm{Mg}$. We have measured the lifetime of the ${3}^{+}$, 6.125-MeV state in $^{26}\mathrm{Mg}$ to be $19(3)\phanto…

research product

Studying Gamow-Teller transitions and the assignment of isomeric and ground states at $N=50$

Direct mass measurements of neutron-deficient nuclides around the N=50 shell closure below $^{100}$Sn were performed at the FRS Ion Catcher (FRS-IC) at GSI, Germany. The nuclei were produced by projectile fragmentation of $^{124}$Xe, separated in the fragment separator FRS and delivered to the FRS-IC. The masses of 14 ground states and two isomers were measured with relative mass uncertainties down to 1×10−7 using the multiple-reflection time-of-flight mass spectrometer of the FRS-IC, including the first direct mass measurements of $^{98}$Cd and $^{97}$Rh. A new QEC=5437±67 keV was obtained for $^{98}$Cd, resulting in a summed Gamow-Teller (GT) strength for the five observed transitions (0+…

research product

Study of the Ti44(α,p)V47 reaction and implications for core collapse supernovae

The underlying physics triggering core collapse supernovae is not fully understood but observations of material ejected during such events helps to solve this puzzle. In particular, several satellite based γ-ray observations of the isotope 44Ti have been reported recently. Conveniently, the amount of this isotope in stellar ejecta is thought to depend critically on the explosion mechanism. The most influential reaction to the amount of 44Ti in supernovae is Ti44(α,p)V47. Here we report on a direct study of this reaction conducted at the REX-ISOLDE facility, CERN. The experiment was performed with a 44Ti beam at Elab = 2.16MeV/u, corresponding to an energy distribution, for reacting α-partic…

research product

High-precision mass measurement of 31S with the double Penning trap JYFLTRAP improves the mass value for 32Cl

research product

FRIB and the GW170817 Kilonova

In July 2018 an FRIB Theory Alliance program was held on the implications of GW170817 and its associated kilonova for r-process nucleosynthesis. Topics of discussion included the astrophysical and nuclear physics uncertainties in the interpretation of the GW170817 kilonova, what we can learn about the astrophysical site or sites of the r process from this event, and the advances in nuclear experiment and theory most crucial to pursue in light of the new data. Here we compile a selection of scientific contributions to the workshop, broadly representative of progress in r-process studies since the GW170817 event.

research product

2021_06_02_TrapOffline: 98Mo-98Ru and 96Ru-96Mo with the JYFLTRAP Penning trap mass spectrometer

Data include the measurement data collected with the JYFLTRAP double Penning trap mass spectrometer in the JYFL-ACCLAB Accelerator Laboratory at the University of Jyväskylä and the associated ELOG notes. Supplementary data for the article published in European Physical Journal A (https://doi.org/10.1140/epja/s10050-022-00695-w) based on this data set are also included. Aineisto sisältää JYFLTRAP -Penningin loukulla kerätyn mittausdatan, lokikirjan, sekä mittauksen pohjalta julkaistun European Physical Journal A -artikkeliin liittyvät tiedostot.

research product