0000000000041278
AUTHOR
M. Vilen
Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques
Isomeric states in 128In and 130In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in 128In and 130In have been separated and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the isomer in 128Sn has been discovered in 128In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16⁺ spin-trap isomer. In 130In, the lowest-lying (10⁻) isom…
Measurement of the $2^+\rightarrow 0^+$ ground-state transition in the $\beta$ decay of $^{20}$F
We report the first detection of the second-forbidden, non-unique, $2^+\rightarrow 0^+$, ground-state transition in the $\beta$ decay of $^{20}$F. A low-energy, mass-separated $^{20}\rm{F}^+$ beam produced at the IGISOL facility in Jyv\"askyl\"a, Finland, was implanted in a thin carbon foil and the $\beta$ spectrum measured using a magnetic transporter and a plastic-scintillator detector. The $\beta$-decay branching ratio inferred from the measurement is $b_{\beta} = [ 0.41\pm 0.08\textrm{(stat)}\pm 0.07\textrm{(sys)}] \times 10^{-5}$ corresponding to $\log ft = 10.89(11)$, making this one of the strongest second-forbidden, non-unique $\beta$ transitions ever measured. The experimental resu…
Precision mass measurements on neutron-rich rare-earth isotopes at JYFLTRAP - reduced neutron pairing and implications for the $r$-process calculations
The rare-earth peak in the $r$-process abundance pattern depends sensitively on both the astrophysical conditions and subtle changes in nuclear structure in the region. This work takes an important step elucidating the nuclear structure and reducing the uncertainties in $r$-process calculations via precise atomic mass measurements at the JYFLTRAP double Penning trap. $^{158}$Nd, $^{160}$Pm, $^{162}$Sm, and $^{164-166}$Gd have been measured for the first time and the precisions for $^{156}$Nd, $^{158}$Pm, $^{162,163}$Eu, $^{163}$Gd, and $^{164}$Tb have been improved considerably. Nuclear structure has been probed via two-neutron separation energies $S_{2n}$ and neutron pairing energy metrics…
Excited states in Br87 populated in β decay of Se87
First isomeric yield ratio measurements by direct ion counting and implications for the angular momentum of the primary fission fragments
We report the first experimental determination of independent isomeric yield ratios using direct ion counting with a Penning trap, which offered such a high resolution in mass that isomeric states could be separated. The measurements were performed at the Ion Guide Isotope Separator On-Line (IGISOL) facility at the University of Jyvaskyla. The isomer production ratios of Ge-81, Y-96,Y-97 Sn-128(,1)30, and Sb-129 in the 25-MeV proton-induced fission of U-na(t) and Th-232 were studied. Three isomeric pairs (Ge-81, Y-96, and Sb-129) were measured for the first time for the U-na(t)(p, f) reaction, while all the reported yield ratios for the Th-232(p, f) reaction were determined for the first ti…
β decay of Cd127 and excited states in In127
A dedicated spectroscopic study of the β decay of 127Cd was conducted at the IGISOL facility at the University of Jyvaskyla. Following high-resolution mass separation in a Penning trap, β-γ-γ coincidences were used to considerably extend the decay scheme of 127In. The β-decaying 3/2+ and 11/2- states in 127Cd have been identified with the 127Cd ground state and the 283-keV isomer. Their respective half-lives have been measured to 0.45(+12-8)s and 0.36(4) s. The experimentally observed β feeding to excited states of 127In and the decay scheme of 127In are discussed in conjunction with large-scale shell-model calculations.
Study of radial motion phase advance during motion excitations in a Penning trap and accuracy of JYFLTRAP mass spectrometer
Phase-imaging ion-cyclotron-resonance technique has been implemented at the Penning-trap mass spectrometer JYFLTRAP and is routinely employed for mass measurements of stable and short-lived nuclides produced at IGISOL facility. Systematic uncertainties that impose limitations on the accuracy of measurements are discussed. It was found out that the phase evolution of the radial motion of ions in a Penning trap during the application of radio-frequency fields leads to a systematic cyclotron frequency shift when more than one ion species is present in the trap during the cyclotron frequency measurement. An analytic expression was derived to correctly account for the shift. Cross-reference mass…
Measurement of the 2+--0+ ground-state transition in the ß decay of 20F
12 pags., 16 figs., 4 tabs.
Measurement of the 2+→0+ ground-state transition in the β decay of 20F
We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of 20F. A low-energy, mass-separated 20F+ beam produced at the IGISOL facility in Jyväskylä, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10−5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…
High-precision measurement of the mass difference between 102Pd and 102Ru
Abstract The Q-value for the neutrinoless double electron capture on 102Pd, Qϵϵ(102Pd), is determined as the atomic mass difference between 102Pd and 102Ru. A precise measurement of the Qϵϵ(102Pd) at the SHIPTRAP Penning trap showed a more than 10σ deviation to the adopted Atomic Mass Evaluation (AME) value. The reliability of the SHIPTRAP measurement was challenged because the AME value was based on numerous experiments including β and electron capture decays and very precise (n, γ) data, all agreeing with each other. To solve the discrepancy, the Qϵϵ(102Pd) has now been determined with the JYFLTRAP Penning trap at the IGISOL facility in the Accelerator Laboratory of the University of Jyva…
Precision mass measurements of Fe67 and Co69,70 : Nuclear structure toward N=40 and impact on r -process reaction rates
Accurate mass measurements of neutron-rich iron and cobalt isotopes $^{67}\mathrm{Fe}$ and $^{69,70}\mathrm{Co}$ have been realized with the JYFLTRAP double Penning-trap mass spectrometer. With novel ion-manipulation techniques, the masses of the $^{69,70}\mathrm{Co}$ ground states and the $1/{2}^{\ensuremath{-}}$ isomer in $^{69}\mathrm{Co}$ have been extracted for the first time. The measurements remove ambiguities in the previous mass values and yield a smoother trend on the mass surface, extending it beyond $N=40$. The moderate $N=40$ subshell gap has been found to weaken below $^{68}\mathrm{Ni}$, a region known for shape coexistence and increased collectivity. The excitation energy for…
Precision mass measurements of $^{67}$Fe and $^{69,70}$Co : Nuclear structure toward N=40 and impact on r -process reaction rates
International audience; Accurate mass measurements of neutron-rich iron and cobalt isotopes Fe67 and Co69,70 have been realized with the JYFLTRAP double Penning-trap mass spectrometer. With novel ion-manipulation techniques, the masses of the Co69,70 ground states and the 1/2− isomer in Co69 have been extracted for the first time. The measurements remove ambiguities in the previous mass values and yield a smoother trend on the mass surface, extending it beyond N=40. The moderate N=40 subshell gap has been found to weaken below Ni68, a region known for shape coexistence and increased collectivity. The excitation energy for the 1/2− intruder state in Co69 has been determined for the first tim…
Radioactive ion beam manipulation at the IGISOL-4 facility
The IGISOL-4 facility in the JYFL Accelerator Laboratory of the University of Jyvaskyla (JYFL-ACCLAB) produces low-energy radioactive ion beams, primarily for nuclear spectroscopy, utilizing an ion guide-based, ISOL-type mass separator. Recently, new ion manipulation techniques have been introduced at the IGISOL-4 including the application of the PI-ICR (Phase-Imaging Ion Cyclotron Resonance) technique at the JYFLTRAP Penning trap, as well as commissioning of a Multi-Reflection Time-Of-Flight (MR-TOF) separator/spectrometer. The successful operation of the MR-TOF also required significant improvement of the Radio-Frequency Quadrupole (RFQ) cooler and buncher device beam pulse time structure…
High-Precision Q -Value Measurement Confirms the Potential of Cs135 for Absolute Antineutrino Mass Scale Determination
The ground-state-to-ground-state $\ensuremath{\beta}$-decay $Q$ value of $^{135}\mathrm{Cs}(7/{2}^{+})\ensuremath{\rightarrow}^{135}\mathrm{Ba}(3/{2}^{+})$ has been directly measured for the first time. The measurement was done utilizing both the phase-imaging ion-cyclotron resonance technique and the time-of-flight ion-cyclotron resonance technique at the JYFLTRAP Penning-trap setup and yielded a mass difference of 268.66(30) keV between $^{135}\mathrm{Cs}(7/{2}^{+})$ and $^{135}\mathrm{Ba}(3/{2}^{+})$. With this very small uncertainty, this measurement is a factor of 3 more precise than the currently adopted $Q$ value in the Atomic Mass Evaluation 2016. The measurement confirms that the f…
Recent experiments at the JYFLTRAP Penning trap
AbstractThe JYFLTRAP double Penning trap mass spectrometer at the Ion Guide Isotope Separator On-Line (IGISOL) facility offers excellent possibilities for high-precision mass measurements of radioactive ions. Around 400 atomic masses, including around 50 isomeric states, have been measured since JYFLTRAP became operational. JYFLTRAP has also been used as a high-resolution mass separator for decay spectroscopy experiments as well as an ion counter for fission yield studies. In this contribution, an overview of recent activities at the JYFLTRAP Penning trap is given, with a focus on nuclei discussed in the PLATAN2019 meeting.
Exploring the mass surface near the rare-earth abundance peak via precision mass measurements at JYFLTRAP
The JYFLTRAP double Penning trap at the Ion Guide Isotope Separator On-Line (IGISOL) facility has been used to measure the atomic masses of 13 neutron-rich rare-earth isotopes. Eight of the nuclides, $^{161}$Pm, $^{163}$Sm, $^{164,165}$Eu, $^{167}$Gd, and $^{165,167,168}$Tb, were measured for the first time. The systematics of the mass surface has been studied via one- and two-neutron separation energies as well as neutron pairing-gap and shell-gap energies. The proton-neutron pairing strength has also been investigated. The impact of the new mass values on the astrophysical rapid neutron capture process has been studied. The calculated abundance distribution results in a better agreement w…
Precision mass measurements of Fe 67 and Co 69 , 70 : Nuclear structure toward N = 40 and impact on r -process reaction rates
Isotope shifts from collinear laser spectroscopy of doubly charged yttrium isotopes
Collinear laser spectroscopy has been performed on doubly charged ions of radioactive yttrium in order to study the isotope shifts of the 294.6-nm $5s\phantom{\rule{0.16em}{0ex}}^{2}S_{1/2}\ensuremath{\rightarrow}5p\phantom{\rule{0.16em}{0ex}}^{2}P_{1/2}$ line. The potential of such an alkali-metal-like transition to improve the reliability of atomic-field-shift and mass-shift factor calculations, and hence the extraction of nuclear mean-square radii, is discussed. Production of yttrium ion beams for such studies is available at the IGISOL IV Accelerator Laboratory, Jyv\"askyl\"a, Finland. This newly recommissioned facility is described here in relation to the on-line study of accelerator-p…
A new off-line ion source facility at IGISOL
An off-line ion source station has been commissioned at the IGISOL (Ion Guide Isotope Separator On-Line) facility. It offers the infrastructure needed to produce stable ion beams from three off-line ion sources in parallel with the radioactive ion beams produced from the IGISOL target chamber. This has resulted in improved feasibility for new experiments by offering reference ions for Penning-trap mass measurements, laser spectroscopy and atom trap experiments.
High-precision mass measurements and production of neutron-deficient isotopes using heavy-ion beams at IGISOL
An upgraded ion-guide system for the production of neutron-deficient isotopes with heavy-ion beams has been commissioned at the IGISOL facility with an $^{36}\mathrm{Ar}$ beam on a $^{\mathrm{nat}}\mathrm{Ni}$ target. It was used together with the JYFLTRAP double Penning trap to measure the masses of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}, ^{86}\mathrm{Mo}, ^{88}\mathrm{Tc}$, and $^{89}\mathrm{Ru}$ ground states and the isomeric state $^{88}\mathrm{Tc}^{m}$. Of these, $^{89}\mathrm{Ru}$ and $^{88}\mathrm{Tc}^{m}$ were measured for the first time. The precision of measurements of $^{82}\mathrm{Zr}, ^{84}\mathrm{Nb}$, and $^{88}\mathrm{Tc}$ was significantly improved. The literature value for $^…
Fission studies at IGISOL/JYFLTRAP: Simulations of the ion guide for neutron-induced fission and comparison with experimental data
For the production of exotic nuclei at the IGISOL facility, an ion guide for neutron-induced fission has been developed and tested in experiments. Fission fragments are produced inside the ion guide and collected using a helium buffer gas. Meanwhile, a GEANT4 model has been developed to simulate the transportation and stopping of the charged fission products. In a recent measurement of neutron-induced fission yields, implantation foils were located at different positions in the ion guide. The gamma spectra from these foils and the fission targets are compared to the results from the GEANT4 simulation. In order to allow fission yield measurements in the low yield regions, towards the tails a…
First β -decay scheme of Nb107 : New insight into the low-energy levels of Mo107
Monoisotopic samples of $^{107}\mathrm{Nb}$ nuclei, produced in the proton-induced fission of $^{238}\mathrm{U}$ and separated using the IGISOL mass separator coupled to a Penning trap, were used to perform $\ensuremath{\beta}$- and $\ensuremath{\gamma}$-coincidence spectroscopy of $^{107}\mathrm{Mo}$. Gamma transitions and excited levels in $^{107}\mathrm{Mo}$ were observed in $\ensuremath{\beta}$ decay for the first time. Spin and parity $1/{2}^{+}$ for the ground state of $^{107}\mathrm{Mo}$ is proposed, to replace the previous $5/{2}^{+}$ assignment. The experimental $\ensuremath{\beta}$-decay half-life of $^{107}\mathrm{Nb}$ was estimated to be $0.27\ifmmode\pm\else\textpm\fi{}0.02$ s.
Measurement of the 2+→0+ ground-state transition in the β decay of F 20
| openaire: EC/H2020/654002/EU//ENSAR2 We report the first detection of the second-forbidden, nonunique, 2(+) -> 0(+), ground-state transition in the beta decay of F-20. A low-energy, mass-separated F-20(+) beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the beta spectrum measured using a magnetic transporter and a plastic-scintillator detector. The beta-decay branching ratio inferred from the measurement is b(beta) = [0.41 +/- 0.08(stat) +/- 0.07(sys)] x 10(-5) corresponding to log ft = 10.89(11), making this one of the strongest second-forbidden, nonunique beta transitions ever measured. The experimental result is supported by shell-mode…
Measurement of the 2 + → 0 + ground-state transition in the β decay of F 20
Production of Sn and Sb isotopes in high-energy neutron induced fission of natU
The first systematic measurement of neutron-induced fission yields has been performed at the upgraded IGISOL-4 facility at the University of Jyväskylä, Finland. The fission products from high-energy neutron-induced fission of nat U were stopped in a gas cell filled with helium buffer gas, and were online separated with a dipole magnet. The isobars, with masses in the range A = 128-133 , were transported to a tape-implantation station and identified using γ -spectroscopy. We report here the relative cumulative isotopic yields of tin (Z = 50) and the relative independent isotopic yields of antimony (Z = 51). Isomeric yield ratios were also obtained for five nuclides. The yields of tin show a …
Evidence of a sudden increase in the nuclear size of proton-rich silver-96
Understanding the evolution of the nuclear charge radius is one of the long-standing challenges for nuclear theory. Recently, density functional theory calculations utilizing Fayans functionals have successfully reproduced the charge radii of a variety of exotic isotopes. However, difficulties in the isotope production have hindered testing these models in the immediate region of the nuclear chart below the heaviest self-conjugate doubly-magic nucleus 100Sn, where the near-equal number of protons (Z) and neutrons (N) lead to enhanced neutron-proton pairing. Here, we present an optical excursion into this region by crossing the N = 50 magic neutron number in the silver isotopic chain with th…
Phase-Imaging Ion-Cyclotron-Resonance technique at the JYFLTRAP double Penning trap mass spectrometer
The Phase-Imaging Ion-Cyclotron-Resonance (PI-ICR) technique has been commissioned at the JYFLTRAP double Penning trap mass spectrometer. This technique is based on projecting the ion motion in the Penning trap onto a position-sensitive multichannel-plate ion detector. Mass measurements of stable 85 Rb $ ^{+}$ and 87 Rb $ ^{+}$ ions with well-known mass values show that relative uncertainties $ \Delta m/m \leq 7\cdot 10^{-10}$ are possible to reach with the PI-ICR technique at JYFLTRAP. The significant improvement both in resolving power and in precision compared to the conventional Time-of-Flight Ion Cyclotron Resonance technique will enable measurements of close-lying isomeric states and …
Precision mass measurements of 67Fe and 69,70Co: Nuclear structure toward N = 40 and impact on r-process reaction rates
Accurate mass measurements of neutron-rich iron and cobalt isotopes 67Fe and 69,70Co have been realized with the JYFLTRAP double Penning-trap mass spectrometer. With novel ion-manipulation techniques, the masses of the 69,70Co ground states and the 1/2− isomer in 69Co have been extracted for the first time. The measurements remove ambiguities in the previous mass values and yield a smoother trend on the mass surface, extending it beyond N=40. The moderate N=40 subshell gap has been found to weaken below 68Ni, a region known for shape coexistence and increased collectivity. The excitation energy for the 1/2− intruder state in 69Co has been determined for the first time and is compared to lar…
Isomeric fission yield ratios for odd-mass Cd and In isotopes using the Phase-Imaging Ion-Cyclotron-Resonance technique
Isomeric yield ratios for the odd-$A$ isotopes of $^{119-127}$Cd and $^{119-127}$In from 25-MeV proton-induced fission on natural uranium have been measured at the JYFLTRAP double Penning trap, by employing the Phase-Imaging Ion-Cyclotron-Resonance technique. With the significantly improved mass resolution of this novel method isomeric states separated by 140 keV from the ground state, and with half-lives of the order of 500 ms, could be resolved. This opens the door for obtaining new information on low-lying isomers, of importance for nuclear structure, fission and astrophysics. In the present work the experimental isomeric yield ratios are used for the estimation of the root-mean-square a…
Mass measurements towards doubly magic Ni-78 : Hydrodynamics versus nuclear mass contribution in core-collapse supernovae
International audience; We report the first high-precision mass measurements of the neutron-rich nuclei 74,75Ni and the clearly identified ground state of 76Cu, along with a more precise mass-excess value of 78Cu, performed with the double Penning trap JYFLTRAP at the Ion Guide Isotope Separator On-Line (IGISOL) facility. These new results lead to a quantitative estimation of the quenching for the N=50 neutron shell gap. The impact of this shell quenching on core-collapse supernova dynamics is specifically tested using a dedicated statistical equilibrium approach that allows a variation of the mass model independent of the other microphysical inputs. We conclude that the impact of nuclear m…
Measurement of the 2+→0+ ground-state transition in the β decay of F20
We report the first detection of the second-forbidden, nonunique, 2+→0+, ground-state transition in the β decay of F20. A low-energy, mass-separated F+20 beam produced at the IGISOL facility in Jyvaskyla, Finland, was implanted in a thin carbon foil and the β spectrum measured using a magnetic transporter and a plastic-scintillator detector. The β-decay branching ratio inferred from the measurement is bβ=[0.41±0.08(stat)±0.07(sys)]×10-5 corresponding to logft=10.89(11), making this one of the strongest second-forbidden, nonunique β transitions ever measured. The experimental result is supported by shell-model calculations and has significant implications for the final evolution of stars tha…