0000000000041276
AUTHOR
Alison Bruce
Three beta-decaying states in 128In and 130In resolved for the first time using Penning-trap techniques
Isomeric states in 128In and 130In have been studied with the JYFLTRAP Penning trap at the IGISOL facility. By employing state-of-the-art ion manipulation techniques, three different beta-decaying states in 128In and 130In have been separated and their masses measured. JYFLTRAP was also used to select the ions of interest for identification at a post-trap decay spectroscopy station. A new beta-decaying high-spin isomer feeding the isomer in 128Sn has been discovered in 128In at 1797.6(20) keV. Shell-model calculations employing a CD-Bonn potential re-normalized with the perturbative G-matrix approach suggest this new isomer to be a 16⁺ spin-trap isomer. In 130In, the lowest-lying (10⁻) isom…
β decay of Ni75 and the systematics of the low-lying level structure of neutron-rich odd- A Cu isotopes
Background: Detailed spectroscopy of neutron-rich odd-A Cu isotopes is of great importance for studying the shell evolution in the region of Ni78. While there is experimental information on excited states in Cu69−73,77,79 isotopes, the information concerning Cu75 is very limited. Purpose: Experimentally observed single-particle, core-coupling, and proton-hole intruder states in Cu75, will complete the systematics of these states in the chain of isotopes. Method: Excited states in Cu75 were populated in the β decay of Ni75 isotopes. The Ni nuclei were produced by the in-flight fission of U238 projectiles, and were separated, identified, and implanted in a highly segmented Si detector array f…
Spectroscopy of nuclei approaching the proton drip-line using a secondary-fragmentation technique with the RISING detector array
An experiment utilizing a double fragmentation reaction was performed to study isobaric analogue states in A similar to 50 nuclei approaching the proton drip-line. gamma-ray spectroscopy will be used to identify excited states in the neutron-deficient nuclei produced in the second fragmentation reaction. Excited state level schemes will be obtained, through comparison with states in their well-known mirror partners, along with information on Coulomb effects through measurements of the Coulomb energy differences between isobaric analogue excited states. The validity of isospin symmetry for nuclei approaching the proton drip-line can also be investigated and the information gained will aid in…
β−-delayed spectroscopy of neutron-rich tantalum nuclei: Shape evolution in neutron-rich tungsten isotopes
The low-lying structure of W-188,W-190,W-192 has been studied following beta decays of the neutron-rich mother nuclei Ta-188,Ta-190,Ta-192 produced following the projectile fragmentation of a 1-GeV-per-nucleon Pb-208 primary beam on a natural beryllium target at the GSI Fragment Separator. The beta-decay half-lives of Ta-188, Ta-190, and Ta-192 have been measured, with gamma-ray decays of low-lying states in their respective W daughter nuclei, using heavy-ion beta-gamma correlations and a position-sensitive silicon detector setup. The data provide information on the low-lying excited states in W-188, W-190, and W-192, which highlight a change in nuclear shape at W-190 compared with that of …
Is Seniority a Partial Dynamic Symmetry in the First $\nu g_{9/2}$ Shell?
The low-lying structures of the midshell νg9/2 Ni isotopes 72Ni and 74Ni have been investigated at the RIBF facility in RIKEN within the EURICA collaboration. Previously unobserved low-lying states were accessed for the first time following β decay of the mother nuclei 72Co and 74Co. As a result, we provide a complete picture in terms of the seniority scheme up to the first (8+) levels for both nuclei. The experimental results are compared to shell-model calculations in order to define to what extent the seniority quantum number is preserved in the first neutron g9/2 shell. We find that the disappearance of the seniority isomerism in the (81+) states can be explained by a lowering of the se…
Recoil isomer tagging in the proton-rich odd-oddN=77isotones, 65142Tband 67144Ho
A time-of-flight correction procedure for fast-timing data of recoils with varying implantation positions at a spectrometer focal plane
Abstract Fast-timing measurements at the focal plane of a separator can suffer from poor timing resolution. This is due to the variations in time-of-flight (ToF) for photons travelling to a given detector, which arise from the changes in the implantation positions of the recoil nuclei emitting the γ rays of interest. In order to minimise these effects on timing measurements, a procedure is presented that improves fast-timing data by performing ToF corrections on an event-by-event basis. This method was used to correct data collected with an array of eight LaBr 3 detectors, which detected γ rays from spatially distributed 138Gd recoil-implants at the focal plane of the Recoil-Ion-Transport-U…
Shell structure and shape coexistence in195Pb
Pb-195 was investigated utilizing the reactions Dy-164(S-36, 5n)Pb-195 and Dy-164(S-34, 3n)Pb-195 at beam energies of 170 and 160MeV respectively. Two new dipole bands which feed into the yrast 25/2(+) state, were found in Pb-195. The connection between the bands and the spherical states was established and thus spins and energies of the involved collective states were determined. The deformation is understood as mainly due to excitations of protons across the Z = 82 shell gap. The observed backbends are interpreted as alignment of i(13/2) neutrons.
Nuclear structure “southeast” ofPb208: Isomeric states inHg208andTl209
The nuclear structure of neutron-rich N>126 nuclei has been investigated following their production via relativistic projectile fragmentation of a E/A=1 GeV U-238 beam. Metastable states in the N=128 isotones Hg-208 and Tl-209 have been identified. Delayed gamma-ray transitions are interpreted as arising from the decay of I-pi=(8(+)) and (17/2(+)) isomers, respectively. The data allow for the so far most comprehensive verification of the shell-model approach in the region determined by magic numbers Z 126.
β-delayedγ-ray spectroscopy of203,204Au and200−202Pt
The beta decay of five heavy, neutron-rich nuclei, Pt-203,Pt-204 and Ir200-202, has been investigated following relativistic cold fragmentation reactions of lead projectiles using the FRS + RISING setup at GSI. This paper reports on the study of the low-lying states in the decay daughter nuclei Au-203,Au-204 and Pt200-202. The characteristic gamma rays for each nucleus have been determined using beta-delayed gamma-ray spectroscopy. Tentative level schemes, relative intensities, and apparent beta feedings are provided. These data are compared with shell-model calculations, which indicate a substantial contribution to the total beta strength from high-energy first-forbidden beta-decay transit…
Mirror symmetry at high spin in51Feand51Mn
Gamma decays from excited states in the ${T}_{z}=\ensuremath{-}\frac{1}{2}$ nucleus ${}^{51}$Fe have been observed for the first time. The differences in excitation energies as compared with those of the mirror partner, ${}^{51}$Mn, have been interpreted in terms of Coulomb effects and the resulting Coulomb energy differences (CED) can be understood intuitively in terms of particle-alignment effects. A new CED effect has been observed, in which different CED trends have been measured for each signature of the rotational structures that characterize these mid-${f}_{7/2}$ shell nuclei. Large-scale $\mathrm{fp}$-shell model calculations have been used to compute the trends of the CED as a func…
'beta'-decay studies of neutron-rich 'TL', 'PB', and 'BI' isotopes
The fragmentation of relativistic uranium projectiles has been exploited at the Gesellschaft fur Schwerionenforschung laboratory to investigate the β decay of neutron-rich nuclei just beyond 208Pb. This paper reports on β-delayed γ decays of 211-213Tl, 215Pb, and 215-219Bi de-exciting states in the daughters 211-213Pb, 215Bi, and 215-219Po. The resulting partial level schemes, proposed with the help of systematics and shell-model calculations, are presented. The role of allowed Gamow-Teller and first-forbidden β transitions in this mass region is discussed. © 2014 American Physical Society.
Lifetime measurement of neutron-rich even-even molybdenum isotopes
D. Ralet et al. -- 11 pags., 10 figs., 3 tabs.
Multipleβ−decaying states in194Re: Shape evolution in neutron-rich osmium isotopes
decays from heavy, neutron-rich nuclei with A∼190 have been investigated following their production via the relativistic projectile fragmentation of an E/A=1 GeV 208Pb primary beam on a ∼2.5 g/cm2 9Be target. The reaction products were separated and identified using the GSI FRagment Separator (FRS) and stopped in the RISING active stopper. γ decays were observed and correlated with these secondary ions on an event-by-event basis such that γ-ray transitions following from both internal (isomeric) and β decays were recorded. A number of discrete, β-delayed γ-ray transitions associated with β decays from 194Re to excited states in 194Os have been observed, including previously reported decays …
Recoil-isomer tagging techniques at RITU
Techniques have been developed to study isomeric states in nuclei with the use of RITU (gas filled separator) at the University of Jyvaskyla. The first was the recoil-isomer tagging technique initially, utilised by D.M. Cullen to study the K π = 8− isomeric state in 138Gd [1]. The juro-sphere array was employed in conjunction with ritu and a focal plane array which consisted of several Compton-suppressed Germanium detectors, placed in close geometry around a multi wire proportional counter (mwpc) and a silicon strip detector used for the implantation of recoiling nuclei. This technique correlates prompt and delayed γ-ray transitions across isomeric states and identifies the lifetime of the …
FIRST RESULTS WITH THE RISING ACTIVE STOPPER
This paper outlines some of the physics opportunities available with the GSI RISING active stopper and presents preliminary results from an experiment aimed at performing beta-delayed gamma-ray spectroscopic studies in heavy-neutron-rich nuclei produced following the projectile fragmentation of a 1 GeV per nucleon 208 Pb primary beam. The energy response of the silicon active stopping detector for both heavy secondary fragments and beta-particles is demonstrated and preliminary results on the decays of neutron-rich Tantalum ( Ta ) to Tungsten ( W ) isotopes are presented as examples of the potential of this technique to allow new structural studies in hitherto experimentally unreachable he…
Electromagnetic transition rates in theN=80nucleus58138Ce
The half-life of the Iπ=6+ yrast state at Ex=2294 keV in 138Ce has been measured as T1/2=880(19) ps using the fast-timing γ-ray coincidence method with a mixed LaBr3(Ce)-HPGe array. The excited states in 138Ce have been populated by the 130Te(12C,4n) fusion-evaporation reaction at an incident beam energy of 56 MeV. The extracted B(E2;61+→41+)=0.101(24) W.u. value is compared with the predictions of truncated basis shell model calculations and with the systematics of the region. This shows an anomalous behavior compared to the neighboring isotonic and isotopic chains. Half-lives for the yrast 5-, 11+ and 14+ states in 138Ce have also been determined in this work.
Half-Life Systematics across theN=126Shell Closure: Role of First-Forbidden Transitions in theβDecay of Heavy Neutron-Rich Nuclei
This Letter reports on a systematic study of β-decay half-lives of neutron-rich nuclei around doubly magic Pb208. The lifetimes of the 126-neutron shell isotone Pt204 and the neighboring Ir200-202, Pt203, Au204 are presented together with other 19 half-lives measured during the "stopped beam" campaign of the rare isotope investigations at GSI collaboration. The results constrain the main nuclear theories used in calculations of r-process nucleosynthesis. Predictions based on a statistical macroscopic description of the first-forbidden β strength reveal significant deviations for most of the nuclei with N<126. In contrast, theories including a fully microscopic treatment of allowed and first…
Character of an 8− isomer of 130Ba
Abstract The static moments and isomer shift of the J π = K π =8 − isomeric state in 130 56 Ba have been measured using the technique of collinear laser spectroscopy. The isomer has been found to have a magnetic dipole moment of −0.043(28) μ N and a static quadrupole moment of +2.77(30) b. These values have been used to assign the state as a two neutron 7 2 + [404]⊗ 9 2 − [514] configuration corresponding to a prolate shape. The half-life of the isomer has been confirmed as 9.54(14) ms. The change in the mean square charge radius was found to be 〈 r 2 〉 130m −〈 r 2 〉 130g–s =−0.0473(30) fm 2 .
Identification of theKπ=8−rotational band in138Gd
A ${K}^{\ensuremath{\pi}}{=8}^{\ensuremath{-}}$ collective rotational band has been established upon the 6 $\ensuremath{\mu}$s isomeric state in the very neutron-deficient nucleus ${}^{138}\mathrm{Gd}.$ The band was observed using a technique involving the correlation of $\ensuremath{\gamma}$-ray transitions across the isomeric state. The single-particle configuration of the isomer has been deduced from the $\ensuremath{\Delta}I=2$ to $\ensuremath{\Delta}I=1$ intensity branching ratios. In addition, a series of other $\ensuremath{\gamma}$-ray transitions were observed which are reasoned to be part of a higher-lying four quasiparticle structure which decays through the ${K}^{\ensuremath{\pi}…
Isospin dependence of electromagnetic transition strengths among an isobaric triplet
*Aydın, Sezgin ( Aksaray, Yazar )
Synthesis ofN=127isotones through (p,n) charge-exchange reactions induced by relativistic208Pb projectiles
The production cross sections of four N=127 isotones ({sup 207}Hg, {sup 206}Au, {sup 205}Pt, and {sup 204}Ir) have been measured using (p,n) charge-exchange reactions, induced in collisions of a {sup 208}Pb primary beam at 1 A GeV with a Be target. These data allow one to investigate the use of a reaction mechanism to extend the limits of the chart of nuclides toward the important r-process nuclei in the region of the third peak of elemental abundance distribution.
Precision Lifetime Measurements Using LaBr3 Detectors With Stable and Radioactive Beams
A range of high resolution gamma-ray spectroscopy measurements have been carried out using arrays which include a number of Cerium-doped Lanthanum-Tribromide (LrBr3 (Ce)) scintillation detectors used in conjunction with high-resolution hyper-pure germanium detectors. Examples of the spectral and temporal responses of such set-ups, using both standard point radioactive sources 152 Eu and 56 Co, and in-beam fusionevaporation reaction experiments for precision measurements of nuclear excited states in 34 P and 138 Ce are presented. The current and future use of such arrays at existing (EURICA at RIKEN) and future (NUSTAR at FAIR) secondary radioactive beam facilities for precision measurements…
Isomeric decay spectroscopy of theBi217isotope
The structure of the neutron-rich bismuth isotope 217Bi has been studied for the first time. The fragmentation of a primary 238U beam at the FRS-RISING setup at GSI was exploited to perform γ-decay spectroscopy, since μs isomeric states were expected in this nucleus. Gamma rays following the decay of a t1/2=3 μs isomer were observed, allowing one to establish the low-lying structure of 217Bi. The level energies and the reduced electric quadrupole transition probability B(E2) from the isomeric state are compared to large-scale shell-model calculations.
Electromagnetic Transition Rate Measurements in theN=80 Isotone,138Ce
A study of intrinsic state halflife measurements in the N=80 nucleus 138Ce has been made using the 130Te(12C,4n)138Ce fusion evaporation reaction at beam energy of 56 MeV. The fast-timing gamma-ray coincidence method was used with a mixed LaBr3(Ce)-HPGe array to establish the lifetimes of the yrast 6+ state at 2294 keV, the Iπ=5− state at 2218 keV, the Iπ=11+ state at 3943 keV and the 14+ state at that at 5312 keV, all of which are in the sub nanosecond regime. Reduced transition probabilities have been calculated for the electromagnetic decays from these states.
New μs Isomers in the Neutron-rich 210Hg Nucleus
Neutron-rich nuclei in the lead region, beyond N = 126, have been studied at the FRS-RISING setup at GSI, exploiting the fragmentation of a primary uranium beam. Two isomeric states have been identified in Hg-210: the 8(+) isomer expected from the seniority scheme in the vg(9/2) shell and a second one at low spin and low excitation energy. The decay strength of the 8(+) isomer confirms the need of effective three-body forces in the case of neutron-rich lead isotopes. The other unexpected low-lying isomer has been tentatively assigned as a 3(-) state, although this is in contrast with theoretical expectations. (C) 2013 Elsevier B.V. All rights reserved.
Trap-assisted separation of nuclear states for gamma-ray spectroscopy: the example of100Nb
Low-lying levels in 100Mo are known to be populated by beta decay from both the ground and isomeric states in 100Nb. The small energy difference (~3 ppm) between the two parent states and the similarity of their half-lives make it difficult to distinguish experimentally between the two decay paths. A new technique for separating different states of nuclei has recently been developed in a series of experiments at the IGISOL facility, using the JYFLTRAP installation, at the University of Jyvaskyla where mass resolution ~2 ppm was achieved in mass measurements and in the production of 133mXe. This paper reports on the extension of this technique to allow the separate study of the gamma-ray dec…
Anomalous Coulomb matrix elements in thef7/2shell
γ decays from high-spin states in the N=Z-1 nucleus 2753Co26 have been identified for the first time. Level energies and Coulomb energy differences between these states and their analogs in its mirror nucleus 53Fe have been compared with large-scale pf shell-model calculations, which offer excellent agreement. New information has been obtained on two-proton Coulomb matrix elements needed in the interpretation. These have been extracted from the data via a number of methods and are shown to exhibit an anomalous behavior for the J=2 coupling.
Application of ultra-fast timing techniques to the study of exotic and weakly produced nuclei
Ultra-fast time-delayed techniques have been recently applied in a number of studies where exotic nuclei were identified using advanced selection techniques. These include large Compton-suppressed Ge arrays, in-flight separators or recoil separators. Some of the new results are discussed in this presentation. Besides the results for $^{32}$Mg and $^{96}$Pd, they include the first determination of the half-life of the $8^+$ state in $^{80}$Ge, $T_1/2$ = 2.95(6) ns, and significantly more precise results for $^{51}$Mn (3680 keV level) and $^{48}$V (421 keV level), $T_1/2$ = 1760(40) ps and $T_1/2$ $\leq$ 135 ps, respectively. Development of new scintillators will steadily improve precision an…