Search results for "TRIBOLOGY"
showing 10 items of 46 documents
Forage silica and water content control dental surface texture in guinea pigs and provide implications for dietary reconstruction.
2019
Significance Ingesta leave characteristic wear features on the tooth surface, which enable us to reconstruct the diet of extant and fossil vertebrates. However, whether dental wear is caused by internal (phytoliths) or external (mineral dust) silicate abrasives is controversially debated in paleoanthropology and biology. To assess this, we fed guinea pigs plant forages of increasing silica content (lucerne < grass < bamboo) without any external abrasives, both in fresh and dried state. Abrasiveness and enamel surface wear increased with higher forage phytolith content. Additionally, water loss altered plant material properties. Dental wear of fresh grass feeding was similar to lucerne brows…
Friction Model for Tool/Work Material Contact Applied to Surface Integrity Prediction in Orthogonal Cutting Simulation
2017
Abstract Tribological behavior at both tool/chip and tool/work material interfaces should be highly considered while simulating the machining process. In fact, it is no longer accurate to suppose one independent constant friction coefficient at the tool/chip interface, since in reality it depends on the applied contact conditions, including the sliding velocity and pressure. The contact conditions at both above mentioned interfaces may affect the thermal and mechanical phenomena and consequently the surface integrity predictions. In this article, the influence of contact conditions (sliding velocity) on the tribological behavior of uncoated tungsten carbide tool against OFHC copper work mat…
Prediction of surface treatment effects on the tribological performance of tool steels using artificial neural networks
2019
The present paper discussed the development of a reliable and robust artificial neural network (ANN) capable of predicting the tribological performance of three highly alloyed tool steel grades. Experimental results were obtained by performing plane-contact sliding tests under non-lubrication conditions on a pin-on-disk tribometer. The specimens were tested both in untreated state with different hardening levels, and after surface treatment of nitrocarburizing. We concluded that wear maps via ANN modeling were a user-friendly approach for the presentation of wear-related information, since they easily permitted the determination of areas under steady-state wear that were appropriate for use…
An integrated approach to evaluating the tribo-contact for coated cutting inserts
2000
Abstract The orthogonal machining process when end turning medium carbon and austenitic stainless steels with cemented WC-Co tools coated with single-layer (TiC), two-layer (TiC/TiN), and three-layer (TiC/Al2O3/TiN) hard thin films was investigated. Extensive experimental investigations including the thermal, mechanical and tribological responses of the tribo-contact between the coating–substrate system and the chip, under different cutting conditions, were carried out. The study sheds light on the cutting forces, the interface temperatures and the tribo-contact conditions, including the friction energy dissipated at the tool–chip interface, the frictional heat flux conducting into either t…
The influence of thin hard coatings on frictional behaviour in the orthogonal cutting process
2000
New knowledge about the tribological response deriving from the interaction of the substrate/coating-chip system, with special attention to the orthogonal cutting process when chatter-free end turning using natural contact tools, is developed. In order to evaluate the frictional behaviour of this process under modified contact conditions, experimental investigations including the contact temperature, the contact loads, friction and the frictional heat flux per unit area were carried out. In contrast to the most obvious approach, the coefficient of sliding friction versus the cutting speed, the contact temperature, the normal pressure and the interface control factor is considered. A number …
Probing of nanocontacts inside a transmission electron microscope
2007
In the past twenty years, powerful tools such as atomic force microscopy have made it possible to accurately investigate the phenomena of friction and wear, down to the nanometer scale. Readers of this book will become familiar with the concepts and techniques of nanotribology, explained by an international team of scientists and engineers, actively involved and with long experience in this field. Edited by two pioneers in the field, 'Fundamentals of Frictions and Wear at the Nanoscale' is suitable both as first introduction to this fascinating subject, and also as a reference for researchers wishing to improve their knowledge of nanotribology and to keep up with the latest results in this …
Inverse Analysis Used to Determine Plastic Flow and Tribological Characteristics for Deep-drawing Sheet
2014
Abstract The present paper aims to develop a simple method based on inverse analysis that allows us to determine the laws of plastic flow coefficients and the friction coefficient between the material and punch. Selecting from different types of tests, we have chosen the Hecker test, because this test requires a single form of punch, the hemispherical one. In this test, the friction between the punch and the blank-sheet is caused by the blank-sheet strains and not by the movement it makes (as in deep drawing case). Besides the friction coefficient, other parameters like hardening and strength coefficients (n and k), influence the distribution of stresses and strains in the material. Using t…
Tribological Aspects of In Situ Manipulation of Nanostructures Inside Scanning Electron Microscope
2014
This chapter is dedicated to manipulation of nanostructures inside a scanning electron (SEM) microscope employed for real-time tribological measurements. Different approaches to force registration and calculation of static and kinetic friction are described. Application of the considered methodology to Au and Ag nanoparticles, as well as ZnO and CuO nanowires, is demonstrated. Advantages and limitations of the methodology in comparison to traditional AFM-based manipulation techniques are discussed.
Comparative studies of ferric green rust and ferrihydrite coated sand: Role of synthesis routes
2008
International audience; A comparative study of ferrihydrite and ferric green rust coated sand prepared by three synthesis routes has been outlined in the present contribution. The two minerals displayed inverse properties in terms of quantity of deposited iron for all three methods investigated. For ferric green rust coating, a newly proposed synthesis route named as dry contact method was efficient for the maximum quantity of iron with almost full coverage area. Considering the similar parameters, the modified wet synthesis method designated as reactive method provides the optimum results for ferrihydrite coated sand. These coatings have been characterised by different surface analysis tec…
Measurements of thickness dispersion in biolayers by scanning force microscopy and comparison with spectroscopic ellipsometry analysis.
2007
Measuring the thickness of biological films remains a difficult task when using differential measurements by atomic force microscopy (AFM). The use of microstructured substrates combined with a selective adsorption constitutes an alternative to tribological measurements. The statistical thickness analysis of biological layers, especially via the dispersion measurements, can provide a way to quantify the molecular orientation. AFM thicknesses were then compared with those obtained optically by spectroscopic ellipsometry (SE) and surface plasmon resonance enhanced ellipsometry (SPREE). The biolayers could then be modeled using a vertical gradient of optical index, which reflects height disper…