Search results for "TTR"
showing 10 items of 3945 documents
Polarity reversal in HVDC joints - The effect of the axial thermal conduction
2020
It has been shown that the establishment of a thermal gradient over the radius of HVDC cables involves the accumulation of space charge within the dielectric layer. High thermal gradients over the insulation thickness of loaded cables can lead to the inversion of the radial electric field pattern. In this scenarios, transient overvoltages and polarity reversal can lead to local and transitory peaks of electric field. Since the temperature distribution plays an important role in reaching critical values of the electric field, it has been considered interesting to have a more in-depth view of the thermal behavior of HVDC systems close the discontinuities of the geometry along the cable axis. …
Framework for complex quantum state generation and coherent control based on on-chip frequency combs
2018
Integrated frequency combs introduce a scalable framework for the generation and manipulation of complex quantum states (including multi-photon and high-dimensional states), using only standard silicon chip and fiber telecommunications components.
Experimental comparison of two control algorithms for low-saliency ratio interior permanent magnet synchronous motors
2018
In this paper, an experimental investigation on the comparison between the Maximum Torque Per Ampere (MTPA) and the Field Orientation Control (FOC) algorithms for interior permanent magnet synchronous machines (IPMSMs) is described, analyzed and discussed. This investigation was carried out on a small-power IPMSM with low saliency ratio. More in detail, after a previous simulation study, the control techniques have been experimentally implemented and validated through means of a dSPACE® rapid prototyping system. The performances of the two algorithms have been evaluated and compared, obtaining interesting results.
Enhanced loss model algorithm for interior permanent magnet synchronous machines
2017
This paper presents an experimental study on the impact of the parameter variations over the performances of a LMA (Loss Model Algorithm) designed for an IPMSM (Interior Permanent Magnet Synchronous Machine). In a previous work, the characterization was carried out by assessing, for several working conditions, the motor parameters that influence the motor efficiency. The proposed enhanced loss model algorithm is implemented in a rapid prototyping system and its performances, in term of efficiency, are compared with other control systems, obtaining promising results.
Measurement of the activation energies of oxygen ion diffusion in yttria stabilized zirconia by flicker noise spectroscopy
2019
The low-frequency noise in a nanometer-sized virtual memristor consisting of a contact of a conductive atomic force microscope (CAFM) probe to an yttria stabilized zirconia (YSZ) thin film deposited on a conductive substrate is investigated. YSZ is a promising material for the memristor application since it is featured by high oxygen ion mobility, and the oxygen vacancy concentration in YSZ can be controlled by varying the molar fraction of the stabilizing yttrium oxide. Due to the low diameter of the CAFM probe contact to the YSZ film (similar to 10nm), we are able to measure the electric current flowing through an individual filament both in the low resistive state (LRS) and in the high r…
Enhancement of the Spin Pumping Effect by Magnon Confluence Process in YIG/Pt Bilayers
2019
The experimental investigation of the spin pumping process by dipolar‐exchange magnons parametrically excited in in‐plane magnetized yttrium iron garnet/platinum bilayers is presented. The electric voltage generated in the platinum layer via the inverse spin Hall effect (ISHE) results from contributions of two opposite spin currents formed by the longitudinal spin Seebeck effect and by the spin pumping from parametric magnons. In the field‐dependent measurements of the spin pumping‐induced component of the ISHE‐voltage, a clearly visible sharp peak is detected at high pumping powers. It is found that the peak position is determined by the process of confluence of two parametrically excited …
The Effect of the Harmonic Content Generated by AC/DC Modular Multilevel Converters on HVDC Cable Systems
2019
With the increasing penetration of renewable and decentralized energy sources into the power grid, an extended use of DC voltages is expected on both distribution and transmission levels. Generation of DC voltages by means of voltage source converters is associated with a wide spectrum of harmonic distortions at converter terminals, both on the ac and on the dc sides. This can lead to partial discharges in power cables, which deteriorate insulation material thus weakening its performance and reducing cable life-time. In the previously published paper, the effect of harmonic distortion on appearance of partial discharges in cable insulation was evaluated. Here, the study related to the PD be…
FOC with Resolver Implementation for PMSM Drives by Using a Low Cost Atmel SAM3X8E Microcontroller
2020
The aim of this paper is the low-cost experimental implementation of a field oriented control strategy for a Permanent Magnet Synchronous Motor (PMSM) by using an Atmel SAM3X8E microcontroller, mounted on an Arduino DUE board. In this electrical drive for PMSM, a resolver is used in order to measure the rotor position and speed: Therefore, the low-cost Arduino DUE performs not only FOC algorithm and phase currents data acquisition, but also a resolver-To-digital converter process, rotor position and speed data acquisition, and resolver signals management. The code has been implemented in the open source Arduino IDE, using C language, whereas the control and plot visualization interfaces hav…
A new technique for partial discharges measurement under DC periodic stress
2017
The aim of the present work is to recognize the type of defect in insulating materials employed in DC electrical systems. This analysis, under AC stress, is carried out by using the Phase Resolved method (PRPD). While, under constant voltage stress this method cannot be performed and measurements show complexities. In order to overcome these problems, a new technique is proposed, based on the application of a periodic continuous waveform. Simulation results, carried out by using a model based on a time-variable conductance of an air void defect, showed the PRPD pattern that can be obtain. Furthermore, compared to the constant DC stress, the measurement duration became lower and the discharg…
Acoustic Wave Behavior in a Specimen Containing an Air Void Defect
2019
The PEA method is the most used technique for the space charge measurements. As is well known, this method uses pressure waves to detect the charges accumulated in solid dielectrics. Based on its working principle, the generated acoustic waves travel within PEA cell and the specimen under test in order to be finally detected by the piezoelectric sensor. For a multilayer specimen and, in particular, in case of different materials that make up the specimen, the acoustic wave reflection is inevitable. Considering that, in several cases, the reflected waves could be detected by the piezoelectric sensor before than the main signals, the PEA cell output profile could results distorted. Based on t…