Search results for "TUMOR"
showing 10 items of 6365 documents
Modulation of CD4 T Cell Response According to Tumor Cytokine Microenvironment
2021
Simple Summary It is now accepted that CD4 T lymphocytes play an essential role in the anti-tumor response. CD4 T lymphocytes can activate and regulate several aspects of innate and adaptive immunity and participate in the rejection of tumors. Understanding the impact of the tumor, through cytokines present in the microenvironment, but also the effect of anti-cancer therapies are critical aspects of immunotherapy research aiming at improving the anti-tumor response dependent on CD4 T lymphocytes. Abstract The advancement of knowledge on tumor biology over the past decades has demonstrated a close link between tumor cells and cells of the immune system. In this context, cytokines have a majo…
Vγ9Vδ2 T Cells as Strategic Weapons to Improve the Potency of Immune Checkpoint Blockade and Immune Interventions in Human Myeloma
2018
The advent of immune checkpoint (ICP) blockade has introduced an unprecedented paradigm shift in the treatment of cancer. Though very promising, there is still a substantial proportion of patients who do not respond or develop resistance to ICP blockade. In vitro and in vivo models are eagerly needed to identify mechanisms to maximize the immune potency of ICP blockade and overcome primary and acquired resistance to ICP blockade. Vγ9Vδ2 T cells isolated from the bone marrow (BM) from multiple myeloma (MM) are excellent tools to investigate the mechanisms of resistance to PD-1 blockade and to decipher the network of mutual interactions between PD-1 and the immune suppressive tumor microenvir…
Tumor Microenvironment And Epithelial Mesenchymal Transition As Targets To Overcome Tumor Multidrug Resistance
2020
It is well established that multifactorial drug resistance hinders successful cancer treatment. Tumor cell interactions with the tumor microenvironment (TME) are crucial in epithelial-mesenchymal transition (EMT) and multidrug resistance (MDR). TME-induced factors secreted by cancer cells and cancer-associated fibroblasts (CAFs) create an inflammatory microenvironment by recruiting immune cells. CD11b+/Gr-1+ myeloid-derived suppressor cells (MDSCs) and inflammatory tumor associated macrophages (TAMs) are main immune cell types which further enhance chronic inflammation. Chronic inflammation nurtures tumor-initiating/cancer stem-like cells (CSCs), induces both EMT and MDR leading to tumor re…
Dosimetric Impact of Interfractional Variations in Prostate Cancer Radiotherapy—Implications for Imaging Frequency and Treatment Adaptation
2019
Background and purpose: To analyze deviations of the applied from the planned doses on a voxel-by-voxel basis for definitive prostate cancer radiotherapy depending on anatomic variations and imaging frequency. Materials and methods: Daily in-room CT imaging was performed in treatment position for 10 patients with prostate cancer undergoing intensity-modulated radiotherapy (340 fraction CTs). Applied fraction doses were recalculated on daily images, and voxel-wise dose accumulation was performed using a deformable registration algorithm. For weekly imaging, weekly position correction vectors were derived and used to rigidly register daily scans of that week to the planning CT scan prior to d…
Mechanisms of Immune Evasion in Multiple Myeloma: Open Questions and Therapeutic Opportunities
2021
Simple Summary The growing interest in immunotherapy for the treatment of multiple myeloma demands a deep knowledge of the complex interactions between malignant and immune cells within the bone marrow. Indeed, understanding the cellular and molecular mechanisms underlying this network should represent the basis for the design of novel patient-oriented biological therapeutic approaches. Here, we describe the role of the main immune components of the myeloma niche along disease evolution and their implication in impairing/improving the response to anti-cancer treatments. Additionally, we provided an overview of the potential weakness of this pro-tumor interplay, evidencing novel therapeutic …
Immunogenic Cell Death and Elimination of Immunosuppressive Cells: A Double-Edged Sword of Chemotherapy
2020
Simple Summary The aim of this review is to detailed immunological effects of chemotherapies focusing on 2 main effects: immunogenic cell death and depletion of suppressive cells. It provides a strong rational for combination of chemotherapy and immunotherapy. Abstract Chemotherapy is initially used to kill proliferative cells. In the current area of emerging immunotherapy, chemotherapies have shown their ability to modulate the tumor micro environment and immune response. We focus here on two main effects: first, immunogenic cell death, defined as a form of regulated cell death (RCD) that is sufficient to activate an adaptive immune response in immunocompetent hosts; and second, the deplet…
The Functional Crosstalk between Myeloid-Derived Suppressor Cells and Regulatory T Cells within the Immunosuppressive Tumor Microenvironment
2021
Simple Summary Immunotherapy improved the therapeutic landscape for patients with advanced cancer diseases. However, many patients do not benefit from immunotherapy. The bidirectional crosstalk between myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg) contributes to immune evasion, limiting the success of immunotherapy by checkpoint inhibitors. This review aims to outline the current knowledge of the role and the immunosuppressive properties of MDSC and Treg within the tumor microenvironment (TME). Furthermore, we will discuss the importance of the functional crosstalk between MDSC and Treg for immunosuppression, issuing particularly the role of cell adhesion molecules. …
Platelet-Derived GARP Induces Peripheral Regulatory T Cells—Potential Impact on T Cell Suppression in Patients with Melanoma-Associated Thrombocytosis
2020
Platelets have been recently described as an important component of the innate and adaptive immunity through their interaction with immune cells. However, information on the platelet&ndash
Adapter Chimeric Antigen Receptor (AdCAR)-Engineered NK-92 Cells for the Multiplex Targeting of Bone Metastases
2021
Simple Summary Metastatic disease remains one of the biggest challenges for tumor therapy. The aim of our study was the preclinical evaluation of adapter chimeric antigen receptor (AdCAR)-engineered NK-92 cell efficacy as a possible treatment strategy for various types of bone metastatic cancers. We confirmed that AdCAR NK-92 cells successfully induces tumor cell lysis in bone metastasis cell lines derived from mammary, renal cell and colorectal carcinoma as well as melanoma in a specific and controllable manner, thus, establishing a potent cellular product with universal applicability and quick clinical translation potential for the treatment of solid tumors, including metastases. Abstract…
A Set of Cell Lines Derived from a Genetic Murine Glioblastoma Model Recapitulates Molecular and Morphological Characteristics of Human Tumors
2021
Simple Summary Glioblastoma (GBM) is a highly aggressive and almost inevitably lethal brain tumor. Animal models for GBM are crucial to study how the tumor evolves in vivo and to test novel treatment options. Most currently available models are based on the transplantation of human GBM cells into mice with a defective immune system. However, this approach does not allow to study the contribution of immune cells to GBM growth and to test immunotherapies. Transplantation of murine GBM cells overcomes this limitation, however, up to now, only a limited number, which mostly do not mimic important characteristics of human GBM, have been available. Via in vivo passaging, we established a set of m…