Search results for "Tangent"

showing 10 items of 123 documents

Viscosity of Polymer Solutions over the Full Range of Composition: A Thermodynamically Inspired Two-Parameter Approach

2015

The approach yields the following relation for the relative viscosity η rel as a function of polymer concentration c (mass/volume): ln ηrel = c/(1 + pc + qc2). Reduced concentrations c (defined as c = c[η], where [η] is the intrinsic viscosity) are used instead of c to incorporate thermodynamic information. The parameters p and q account for changes in the free volume of the solvent caused by the polymer. The analysis of literature data for seven very dissimilar systems discloses the following common feature: p > 0 and q < 0. This means that the curves in the plots of ln ηrel as a function of c are normally located below the tangent at low c and above it at high c. The values of p and q cor…

chemistry.chemical_classificationChemistryGeneral Chemical EngineeringIntrinsic viscosityRelative viscosityThermodynamicsTangentGeneral ChemistryFunction (mathematics)PolymerIndustrial and Manufacturing EngineeringSolventViscosityVolume (thermodynamics)Industrial &amp; Engineering Chemistry Research
researchProduct

Differential structure associated to axiomatic Sobolev spaces

2020

The aim of this note is to explain in which sense an axiomatic Sobolev space over a general metric measure space (à la Gol’dshtein–Troyanov) induces – under suitable locality assumptions – a first-order differential structure. peerReviewed

cotangent moduleLocality of differentialsPure mathematicsGeneral MathematicsAxiomatic Sobolev spaceDifferential structureSpace (mathematics)01 natural sciencesMeasure (mathematics)Settore MAT/05 - Analisi MatematicaFOS: Mathematicsaxiomatic Sobolev space0101 mathematics46E35 51FxxdifferentiaalilaskentaCotangent moduleAxiomMathematicsAxiomatic Sobolev space; Cotangent module; Locality of differentials010102 general mathematicsLocalitymetriset avaruudetFunctional Analysis (math.FA)locality of differentialsSobolev spaceMathematics - Functional AnalysisMetric (mathematics)
researchProduct

Geometrical-mechanical artefacts for managing tangent concept

2012

educational artefactstractional motiontangent epistemology; tractional motion; educational artefacts; semiotic mediationsemiotic mediationtangent epistemologytangent epistemology tractional motion educational artefacts semiotic mediation
researchProduct

Assessment of cross-flow filtration as microalgae harvesting technique prior to anaerobic digestion: Evaluation of biomass integrity and energy demand

2018

[EN] In the present study, the effect of cross-flow filtration (CFF) on the overall valorization of Chlorella spp. microalgae as biogas was assessed. The effect of CFF on microalgae cell integrity was quantified in terms of viability which was correlated with the anaerobic biodegradability. The viability dropped as the biomass concentration increased, whereas anaerobic biodegradability increased linearly with the viability reduction. It was hypothesized that a stress-induced release and further accumulation of organic polymers during CFF increased the flux resistance which promoted harsher shear-stress conditions. Furthermore, the volume reduction as the concentration increased entailed an …

filtration tangentielleEnvironmental Engineering020209 energymedia_common.quotation_subject[SDV]Life Sciences [q-bio]Anaerobic biodegradabilitydigestion anaérobieBiomassBioengineering02 engineering and technologyChlorellaEnergy balance010501 environmental sciences7. Clean energy01 natural sciencesAgricultural economicsValencianbilan énergétiqueintégrité cellulaireRegional developmentGratitude0202 electrical engineering electronic engineering information engineeringMicroalgaeHarvestingAnaerobiosisBiomassWaste Management and DisposalTECNOLOGIA DEL MEDIO AMBIENTE0105 earth and related environmental sciencesmedia_commonbioénergiemicro-algueEnergy demandRenewable Energy Sustainability and the EnvironmentCross-flow filtrationGeneral MedicinebiogazMicroalgae integritylanguage.human_languageAnaerobic digestionWork (electrical)13. Climate actionBiofuelscross-flow filtration;harvesting;microalgae integrity;anaerobic biodegradability;energy balance[SDE]Environmental ScienceslanguageChristian ministryBusinessFiltration
researchProduct

Visuaalinen tangentti lukion pitkässä matematiikassa

2017

Opinnäytetyössä selvitellään lukion pitkän matematiikan opiskelijoiden käsityksiä visuaalisesta tangenttisuorasta (lyh. tangentista). Työ sisältää tietokoosteen tutkielman aihepiirin visuaalisesta tangentista. Lukio-opiskelijoiden käsityksiä tangentista esitellään Tallin 1980-luvun tietokoneavusteisesta opetuskokeilusta ja Bizan 2000-luvun tutkimuksesta. Empiirisessä tutkimuksessa tutkittiin lukion pitkän matematiikan oppikirjasarjan visuaalista tangenttia. Ihmiset ymmärtävät aistein havainnoitavat kohteet pääosin intuition avulla, kun taasen matemaattiset käsitteet voidaan ymmärtää aksioomien, määritelmien ja lauseiden pohjalta. Kuitenkin Bizan laaja tutkimus osoittaa, että lukio-opiskelij…

matematiikkavisuaalisuusgeometrinen tangenttilukioTapaustutkimusmatemaattinen ajatteluopetusKvalitatiivinen tutkimusanalyyttinen tangenttivisuaalinen tangenttididaktiikkaanalyyttinen geometriageometriahavainnollinen derivaatta
researchProduct

Geometric Aspects of Thermodynamics

2016

This chapter deals with mathematical aspects of thermodynamics most of which will be seen to be primarily of geometrical nature. Starting with a short excursion to differentiable manifolds we summarize the properties of functions, of vector fields and of one-forms on thermodynamic manifolds. This summary centers on exterior forms over Euclidean spaces and the corresponding differential calculus. In particular, one-forms provide useful tools for the analysis of thermodynamics. A theorem by Caratheodory is developed which is closely related to the second law of thermodynamics. The chapter closes with a discussion of systems which depend on two variables and for which there is an interesting a…

media_common.quotation_subjectEuclidean geometryExterior derivativeThermodynamicsDifferential calculusVector fieldSecond law of thermodynamicsCanonical transformationTangent vectorDirectional derivativeMathematicsmedia_common
researchProduct

On one-dimensionality of metric measure spaces

2019

In this paper, we prove that a metric measure space which has at least one open set isometric to an interval, and for which the (possibly non-unique) optimal transport map exists from any absolutely continuous measure to an arbitrary measure, is a one-dimensional manifold (possibly with boundary). As an immediate corollary we obtain that if a metric measure space is a very strict $CD(K,N)$ -space or an essentially non-branching $MCP(K,N)$-space with some open set isometric to an interval, then it is a one-dimensional manifold. We also obtain the same conclusion for a metric measure space which has a point in which the Gromov-Hausdorff tangent is unique and isometric to the real line, and fo…

metric measure spacesMathematics - Differential GeometryApplied MathematicsGeneral MathematicsOpen setBoundary (topology)Metric Geometry (math.MG)Space (mathematics)53C23Measure (mathematics)metriset avaruudetManifoldCombinatoricsdifferentiaaligeometriaRicci curvatureDifferential Geometry (math.DG)optimal transportMathematics - Metric GeometryMetric (mathematics)FOS: MathematicsmittateoriaGromov--Hausdorff tangentsReal lineRicci curvatureMathematics
researchProduct

Differential of metric valued Sobolev maps

2020

We introduce a notion of differential of a Sobolev map between metric spaces. The differential is given in the framework of tangent and cotangent modules of metric measure spaces, developed by the first author. We prove that our notion is consistent with Kirchheim's metric differential when the source is a Euclidean space, and with the abstract differential provided by the first author when the target is $\mathbb{R}$.

metric measure spacesPure mathematicsFunction spaces; Metric measure spaces; Sobolev spaces01 natural sciencesMetric measure spacesfunction spacesSettore MAT/05 - Analisi Matematica0103 physical sciencesFOS: MathematicsTrigonometric functions0101 mathematicsMathematicsEuclidean space010102 general mathematicsTangentmetriset avaruudetFunctional Analysis (math.FA)Mathematics - Functional AnalysisSobolev spaceMetric spaceSobolev spacesFunction spaces010307 mathematical physicsfunktionaalianalyysiMetric differentialAnalysisJournal of Functional Analysis
researchProduct

Differentiaalimuodot ja niiden integrointi euklidisten avaruuksien alimonistoilla

2016

Differentiaalimuodot ovat oleellinen osa modernin matematiikan koneistoa. Niitä käytetään paitsi geometrian tutkimuksessa, myös teoreettisen fysiikan kentällä muun muassa elektrostatiikassa, mekaniikassa ja termodynamiikassa. Differentiaalimuodot elävät luonnollisesti sileillä monistoilla, jotka puolestaan esiintyvät kaikkialla, missä on tarve puhua siisteistä joukoista koordinaattien avulla. Tässä tutkielmassa tutustutaan differentiaalimuotojen perusteoriaan alkaen euklidisten avaruuksien alimonistoista. Tämän jälkeen määritellään monistojen tangentti- ja kotangenttiavaruudet, k-muotojen ulkoinen tulo, differentiaalimuotojen ulkoinen derivaatta sekä lopulta differentiaalimuodon integraali …

monistojen suunnistaminendifferentiaaligeometriaStokesin ja Cartanin lauseulkoinen derivaattaulkoinen tulotangenttiavaruusdifferentiaalimuodotmonistotintegrointidifferentiaalimuotojen sovellukset
researchProduct

Algebraic singularities have maximal reductive automorphism groups

1989

LetX = On/ibe an analytic singularity where ṫ is an ideal of theC-algebraOnof germs of analytic functions on (Cn, 0). Letdenote the maximal ideal ofXandA= AutXits group of automorphisms. An abstract subgroupequipped with the structure of an algebraic group is calledalgebraic subgroupofAif the natural representations ofGon all “higher cotangent spaces”are rational. Letπbe the representation ofAon the first cotangent spaceandA1=π(A).

p-groupPure mathematics32B30010308 nuclear & particles physicsGeneral Mathematics010102 general mathematicsOuter automorphism groupCotangent spaceReductive groupAutomorphism01 natural sciences14B12Inner automorphismAlgebraic group0103 physical sciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGMaximal ideal13J1520G200101 mathematics32M05MathematicsNagoya Mathematical Journal
researchProduct