Search results for "Tar"
showing 10 items of 25541 documents
Vegetation vulnerability to drought in Spain
2014
[EN] Frequency of climatic extremes like long duration droughts has increased in Spain over the last century.The use of remote sensing observations for monitoring and detecting drought is justified on the basis that vegetation vigor is closely related to moisture condition. We derive satellite estimates of bio-physical variables such as fractional vegetation cover (FVC) from MODIS/EOS and SEVIRI/MSG time series. The study evaluates the strength of temporal relationships between precipitation and vegetation condition at time-lag and cumulative rainfall intervals. From this analysis, it was observed that the climatic disturbances affected both the growing season and the total amount of vegeta…
A review of environmental impacts of winter road maintenance
2019
Abstract The need for winter road maintenance (WRM) is changing in cold regions due to climate change. How the different modes of WRM will contribute to future overall emissions from infrastructure is therefore of great interest to road owners with a view to a more sustainable, low-carbon future. In the quest for near-zero-emissions transport, all aspects of the transport sector need to be accounted for in the search for possible mitigation of emissions. This study used 35 peer-reviewed articles published between 2000 and 2018 to map available information on the environmental impacts and effect of WRM and reveal any research gaps. The articles were categorized according to their research th…
Quantifying and easing conflicting goals between interest groups in natural resource planning
2019
Management of natural resources at the regional level is a compromise between a variety of objectives and interests. At the local level, management of the forests depends upon the ownership structure, with forest owners using their forests as they see fit. A potential conflict occurs if the forest owners’ management decisions are counter to the interests of society in general or the industry that relies on the forest resource as their raw material. We explore the intensity of this conflict at the regional level in several large boreal forest production landscapes. To explore the conflict, we investigate three main interest groups: (i) economically oriented forest owners; (ii) industry grou…
Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing
2019
[EN] The interest of the scientific community on the remote observation of sun-induced chlorophyll fluorescence (SIF) has increased in the recent years. In this context, hyperspectral ground measurements play a crucial role in the calibration and validation of future satellite missions. For this reason, the European cooperation in science and technology (COST) Action ES1309 OPTIMISE has compiled three papers on instrument characterization, measurement setups and protocols, and retrieval methods (current paper). This study is divided in two sections; first, we evaluated the uncertainties in SIF retrieval methods (e.g., Fraunhofer line depth (FLD) approaches and spectral fitting method (SFM))…
Controlled time integration for the numerical simulation of meteor radar reflections
2016
We model meteoroids entering the Earth[U+05F3]s atmosphere as objects surrounded by non-magnetized plasma, and consider efficient numerical simulation of radar reflections from meteors in the time domain. Instead of the widely used finite difference time domain method (FDTD), we use more generalized finite differences by applying the discrete exterior calculus (DEC) and non-uniform leapfrog-style time discretization. The computational domain is presented by convex polyhedral elements. The convergence of the time integration is accelerated by the exact controllability method. The numerical experiments show that our code is efficiently parallelized. The DEC approach is compared to the volume …
Processing and Assessment of Spectrometric, Stereoscopic Imagery Collected Using a Lightweight UAV Spectral Camera for Precision Agriculture
2013
Imaging using lightweight, unmanned airborne vehicles (UAVs) is one of the most rapidly developing fields in remote sensing technology. The new, tunable, Fabry-Perot interferometer-based (FPI) spectral camera, which weighs less than 700 g, makes it possible to collect spectrometric image blocks with stereoscopic overlaps using light-weight UAV platforms. This new technology is highly relevant, because it opens up new possibilities for measuring and monitoring the environment, which is becoming increasingly important for many environmental challenges. Our objectives were to investigate the processing and use of this new type of image data in precision agriculture. We developed the entire pro…
Individual Tree Detection and Classification with UAV-Based Photogrammetric Point Clouds and Hyperspectral Imaging
2017
Made available in DSpace on 2018-12-11T17:11:58Z (GMT). No. of bitstreams: 0 Previous issue date: 2017-03-01 Suomen Akatemia Small unmanned aerial vehicle (UAV) based remote sensing is a rapidly evolving technology. Novel sensors and methods are entering the market, offering completely new possibilities to carry out remote sensing tasks. Three-dimensional (3D) hyperspectral remote sensing is a novel and powerful technology that has recently become available to small UAVs. This study investigated the performance of UAV-based photogrammetry and hyperspectral imaging in individual tree detection and tree species classification in boreal forests. Eleven test sites with 4151 reference trees repr…
Tree Species Classification of Drone Hyperspectral and RGB Imagery with Deep Learning Convolutional Neural Networks
2020
Interest in drone solutions in forestry applications is growing. Using drones, datasets can be captured flexibly and at high spatial and temporal resolutions when needed. In forestry applications, fundamental tasks include the detection of individual trees, tree species classification, biomass estimation, etc. Deep neural networks (DNN) have shown superior results when comparing with conventional machine learning methods such as multi-layer perceptron (MLP) in cases of huge input data. The objective of this research is to investigate 3D convolutional neural networks (3D-CNN) to classify three major tree species in a boreal forest: pine, spruce, and birch. The proposed 3D-CNN models were emp…
Supporting group decision makers to locate temporary relief distribution centres after sudden-onset disasters
2020
International audience; In the humanitarian response, multiple decision-makers (DMs) need to collaborate in various problems, such as locating temporary relief distribution centres (RDCs). Several studies have argued that maximising demand coverage, reducing logistics costs and minimising response time are among the critical objectives when locating RDCs after a sudden-onset disaster. However, these objectives are often conflicting and the trade-offs can considerably complicate the situation for finding a consensus.To address the challenge and support the DMs, we suggest investigating the stability of non-dominated alternatives derived from a multi-objective model based on Monte Carlo Simul…
Climate indices for the Baltic states from principal component analysis
2017
Abstract. We used principal component analysis (PCA) to derive climate indices that describe the main spatial features of the climate in the Baltic states (Estonia, Latvia, and Lithuania). Monthly mean temperature and total precipitation values derived from the ensemble of bias-corrected regional climate models (RCMs) were used. Principal components were derived for the years 1961–1990. The first three components describe 92 % of the variance in the initial data and were chosen as climate indices in further analysis. Spatial patterns of these indices and their correlation with the initial variables were analyzed, and it was detected (based on correlation coefficient between principal compon…