Search results for "Terahertz radiation"
showing 10 items of 117 documents
Antenna Tapering Strategy for Near-Field Enhancement Optimization in Terahertz Gold Nanocavities
2019
Plasmonic nanoantennas (NAs) have received a growing attention in recent years due to their ability to confine light on sub-wavelength dimensions [1]. More recently, this property has been exploited in the terahertz (THz) frequency range (0.1–10 THz) for enhanced sensing and spectroscopy [2], as well as for more fundamental investigations [3]. These applications typically require high local electric fields that can be achieved by concentrating THz radiation into deeply sub-wavelength volumes located at the NAs extremities. However, the achievable near-field enhancement values are severely limited by the poor resonance quality factor of traditional rod-shaped THz NAs. Unlike what is commonly…
Nano-holes vs nano-cracks in thin gold films: What causes anomalous THz transmission?
2015
Nano-structuring materials can change their properties extraordinarily, but so can defects caused by manufacturing. We study the effect of capacitive defects on terahertz transmission in golden nanomeshes, and find their influence crucial.
Space-time features of THz emission from optical rectification in sub-wavelength areas
2011
We present our investigation on the THz space-time emission characteristic induced by the non-paraxial generation regime in highly localized THz generation via optical rectification on sub-wavelength areas.
Affordable, ultra-broadband coherent detection of terahertz pulses via CMOS-compatible solid-state devices
2017
We demonstrate the first fully solid-state technique for the coherent detection of ultra-broadband THz pulses (0.1-10 THz), relying on the electric-field-induced second-harmonic generation attained in integrated CMOS-compatible devices.
Spatial and spectral properties of small area THz generation for sub-wavelength microscopy
2010
A highly localized THz source is a promising candidate for sub-wavelength microscopy, due to its superior radiation power throughput with respect to others near-field techniques. Here, we report on the spatial and the spectral near-field properties of our highly localized THz source.
Broadband asymmetric transmission of THz radiation through double metallic gratings
2013
We analyse numerically and experimentally the asymmetric transmission through sub-wavelength double metallic gratings. The possibility of achieving a broadband unidirectional transmission of THz waves through the grating is confirmed. The proposed gratings allow for efficient one-way transmission in the wavelength range from 2.5 to 3.5 mm.
Asymmetric transmission of terahertz radiation through a double grating.
2013
We report on experimental evidence of unidirectional transmission of terahertz waves through a pair of metallic gratings with different periods. The gratings are optimized for a broadband transmission in one direction, accompanied with a high extinction rate in the opposite direction. In contrast to previous studies, we show that the zero-order nonreciprocity cannot be achieved. Nonetheless, we confirm that the structure can be used successfully as an asymmetric filter.
Time‐Domain Integration of Broadband Terahertz Pulses in a Tapered Two‐Wire Waveguide
2021
In this work, the time-domain integration of broadband terahertz (THz) pulses via a tapered two-wire waveguide (TTWWG) is reported. Such a guiding structure consists of two metallic wires separated by a variable air gap that shrinks down to a subwavelength size as the movement takes from the waveguide input to its output. It is shown that while an input THz pulse propagates toward the subwavelength output gap, it is reshaped into its first-order time integral waveform. In order to prove the TTWWG time integration functionality, the THz pulse is detected directly within the output gap of the waveguide, so as to prevent the outcoupling diffraction from altering the shape of the time-integrate…
Devices based on semiconductor nanowires
2009
Recently, nanoelectromechanical systems (NEMS) have attracted much attention due to their unique properties and possible applications that differ greatly from those of microelectromechanical systems. NEMS operating frequencies may achieve giga- and terahertz levels and their power consumption and heat capacity is extremely low. Moreover, integration levels may reach 1012 devices per cm−2. In this review, we present techniques for integrating semiconductor materials in NEMS. In particular, we examine fabrication, structure, properties and potential applications of two main classes of NEMS, namely, resonators and switches.
Generation and characterization of 06-THz polarization domain-wall trains in an ultralow-birefringence spun fiber
2007
Polarization domain-wall (PDW) trains have been generated at a repetition rate of 0.6 THz in an ultralow-birefringence spun optical fiber and measured by use of an adapted frequency-resolved optical gating technique. Characterization of the intensity and the phase of the PDW train shows complete switching between adjacent domains of counterrotating circular polarizations and directly confirms predictions based on numerical simulations of the incoherently coupled nonlinear Schrödinger equations.