Search results for "Thalia"
showing 10 items of 141 documents
Screening for Solute Transporters in Plant Photosynthetic Membranes
2008
As compared to chloroplast envelope transporters, the field of thylakoid transporters is largely unexplored. There is evidence for several transport activities in the plant thylakoid membrane, but only a copper P-type ATPase and an ATP/ADP carrier have been so far identified at the gene level in Arabidopsis thaliana. Using in silico analyses, we have predicted the existence of approximately 15 thylakoid transporters, including phosphate transporters and cation channels. For experimental validation, we have used peptide- specific antibodies and functional analyses in heterologous system. These novel data are highly relevant to understand the transport network of the thylakoid membrane and it…
Ligation Tunes Protein Reactivity in an Ancient Haemoglobin: Kinetic Evidence for an Allosteric Mechanism in Methanosarcina acetivorans Protoglobin
2012
Abstract: Protoglobin from Methanosarcina acetivorans (MaPgb) is a dimeric globin with peculiar structural properties such as a completely buried haem and two orthogonal tunnels connecting the distal cavity to the solvent. CO binding to and dissociation from MaPgb occur through a biphasic kinetics. We show that the heterogenous kinetics arises from binding to (and dissociation from) two tertiary conformations in ligation-dependent equilibrium. Ligation favours the species with high binding rate (and low dissociation rate). The equilibrium is shifted towards the species with low binding (and high dissociation) rates for the unliganded molecules. A quantitative model is proposed to describe t…
Polyamine Oxidase 5 loss-of-function mutations in Arabidopsis thaliana trigger metabolic and transcriptional reprogramming and promote salt stress to…
2017
The family of polyamine oxidases (PAO) in Arabidopsis (AtPAO1-5) mediates polyamine (PA) back-conversion, which reverses the PA biosynthetic pathway from spermine, and its structural isomer thermospermine (tSpm), into spermidine and then putrescine. Here, we have studied the involvement of PA back-conversion in Arabidopsis salinity tolerance. AtPAO5 is the Arabidopsis PAO gene member most transcriptionally induced by salt stress. Two independent loss-of-function mutants (atpao5-2 and atpao5-3) were found to exhibit constitutively higher tSpm levels, with associated increased salt tolerance. Using global transcriptional and metabolomic analyses, the underlying mechanisms were studied. Stimul…
Copper and iron homeostasis inArabidopsis: responses to metal deficiencies, interactions and biotechnological applications
2007
Plants have developed sophisticated mechanisms to tightly control the acquisition and distribution of copper and iron in response to environmental fluctuations. Recent studies with Arabidopsis thaliana are allowing the characterization of the diverse families and components involved in metal uptake, such as metal-chelate reductases and plasma membrane transporters. In parallel, emerging data on both intra- and intercellular metal distribution, as well as on long-distance transport, are contributing to the understanding of metal homeostatic networks in plants. Furthermore, gene expression analyses are deciphering coordinated mechanisms of regulation and response to copper and iron limitation…
Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors
2019
Reactive oxygen species (ROS)-dependent signaling pathways from chloroplasts and mitochondria merge at the nuclear protein RADICAL-INDUCED CELL DEATH1 (RCD1). RCD1 interacts in vivo and suppresses the activity of the transcription factors ANAC013 and ANAC017, which mediate a ROS-related retrograde signal originating from mitochondrial complex III. Inactivation of RCD1 leads to increased expression of mitochondrial dysfunction stimulon (MDS) genes regulated by ANAC013 and ANAC017. Accumulating MDS gene products, including alternative oxidases (AOXs), affect redox status of the chloroplasts, leading to changes in chloroplast ROS processing and increased protection of photosynthetic apparatus.…
Free Radicals Mediate Systemic Acquired Resistance
2014
Summary: Systemic acquired resistance (SAR) is a form of resistance that protects plants against a broad spectrum of secondary infections. However, exploiting SAR for the protection of agriculturally important plants warrants a thorough investigation of the mutual interrelationships among the various signals that mediate SAR. Here, we show that nitric oxide (NO) and reactive oxygen species (ROS) serve as inducers of SAR in a concentration-dependent manner. Thus, genetic mutations that either inhibit NO/ROS production or increase NO accumulation (e.g., a mutation in S-nitrosoglutathione reductase [GSNOR]) abrogate SAR. Different ROS function additively to generate the fatty-acid-derived azel…
Deregulated High Affinity Copper Transport Alters Iron Homeostasis inArabidopsis
2020
The present work describes the effects on iron homeostasis when copper transport was deregulated in Arabidopsis thaliana by overexpressing high affinity copper transporters COPT1 and COPT3 (COPTOE). A genome-wide analysis conducted on COPT1OE plants, highlighted that iron homeostasis gene expression was affected under both copper deficiency and excess. Among the altered genes were those encoding the iron uptake machinery and their transcriptional regulators. Subsequently, COPTOE seedlings contained less iron and were more sensitive than controls to iron deficiency. The deregulation of copper (I) uptake hindered the transcriptional activation of the subgroup Ib of basic helix-loop-helix (bHL…
Identificació i caracterització de transportadors de coure d'alta afinitat d'Arabidopsis thaliana
2003
La tesi doctoral s'emmarca dins de l'àrea de la biologia molecular de plantes, incloent algunes consideracions de tipus fisiològic, i descriu la identificació i caracterització de 5 gens Arabidopsis que codifiquen proteïnes amb similitud estructural amb els transportadors de coure eucariotes de la família Ctr. Els resultats del treball s'han dividit en tres capítols. En el primer d'ells s'analitza a nivell teòric les seqüències dels polipèptids de la família COPT d'Arabidopsis, s'investiga la seua funcionalitat en un sistema d'expressió heteròleg i es caracteritza de forma global el perfil d'expressió dels gens de la família. En aquest apartat es mostra que COPT1 i COPT2 restableixen amb gr…
Activation of the plant plasma membrane H+ -ATPase. Is there a direct interaction between lysophosphatidylcholine and the C-terminal part of the enzy…
1996
The antagonistic effects of the fungal toxin beticolin-1 and of L-alpha-lysophosphatidylcholine (lysoPC) were investigated on the plasma membrane H+-ATPase of the plant Arabidopsis thaliana (isoform 2) expressed in yeast, using both wild-type enzyme (AHA2) and C-terminal truncated enzyme (aha2delta92). Phosphohydrolytic activities of both enzymes were inhibited by beticolin-1, with very similar 50% inhibitory concentrations, indicating that the toxin action does not involve the C-terminal located autoinhibitory domain of the proton pump. Egg lysoPC, a compound that activates the H+-ATPase by a mechanism involving the C-terminal part of the protein, was found to be able to reverse the inhibi…
Ions channels/transporters and chloroplast regulation.
2015
International audience; Ions play fundamental roles in all living cells and their gradients are often essential to fuel transports, to regulate enzyme activities and to transduce energy within and between cells. Their homeostasis is therefore an essential component of the cell metabolism. Ions must be imported from the extracellular matrix to their final subcellular compartments. Among them, the chloroplast is a particularly interesting example because there, ions not only modulate enzyme activities, but also mediate ATP synthesis and actively participate in the building of the photosynthetic structures by promoting membrane-membrane interaction. In this review, we first provide a comprehen…