Search results for "Thalia"
showing 10 items of 141 documents
Regulation and role of nitric oxide production in Arabidopsis thaliana defense responses induced by oligogalacturonides
2014
SPEIPM; International audience
Defense Responses in Two Ecotypes of Lotus japonicus against Non-Pathogenic Pseudomonas syringae
2013
Lotus japonicus is a model legume broadly used to study many important processes as nitrogen fixing nodule formation and adaptation to salt stress. However, no studies on the defense responses occurring in this species against invading microorganisms have been carried out at the present. Understanding how this model plant protects itself against pathogens will certainly help to develop more tolerant cultivars in economically important Lotus species as well as in other legumes. In order to uncover the most important defense mechanisms activated upon bacterial attack, we explored in this work the main responses occurring in the phenotypically contrasting ecotypes MG-20 and Gifu B-129 of L. ja…
Studying the Function of the Phosphorylated Pathway of Serine Biosynthesis in Arabidopsis thaliana
2017
Photorespiration is an essential pathway in photosynthetic organisms and is particularly important to detoxify and recycle 2-phosphoglycolate (2-PG), a by-product of oxygenic photosynthesis. The enzymes that catalyze the reactions in the photorespiratory core cycle and closely associated pathways have been identified; however, open questions remain concerning the metabolic network in which photorespiration is embedded. The amino acid serine represents one of the major intermediates in the photorespiratory pathway and photorespiration is thought to be the major source of serine in plants. The restriction of photorespiration to autotrophic cells raises questions concerning the source of serin…
Plant iNOS: conquest of the Holy Grail
2003
In animals, nitric oxide (NO) is produced by a family of enzymes named nitric oxide synthases (NOSs). Although no NOS-like gene has been found in the Arabidopsis thaliana genome, biochemical studies have suggested that a NOS-like protein is likely to be activated in plants resisting pathogens. This protein has been recently identified as a variant P protein of glycine decarboxylase. This discovery means that studies of nitric oxide signalling functions in plants are now entering a new phase.
p24 Family Proteins Are Involved in Transport to the Plasma Membrane of GPI-Anchored Proteins in Plants
2020
p24 proteins are a family of type-I membrane proteins that cycle between the endoplasmic reticulum (ER) and the Golgi apparatus via Coat Protein I (COPI)- and COPII-coated vesicles. These proteins have been proposed to function as cargo receptors, but the identity of putative cargos in plants is still elusive. We previously generated an Arabidopsis (Arabidopsis thaliana) quadruple loss-of-function mutant affecting p24 genes from the δ-1 subclass of the p24 delta subfamily (p24δ3δ4δ5δ6 mutant). This mutant also had reduced protein levels of other p24 family proteins and was found to be sensitive to salt stress. Here, we used this mutant to test the possible involvement of p24 proteins in the…
A genetic approach reveals different modes of action of prefoldins
2021
17 p.-7 fig.
Modulation of copper deficiency responses by diurnal and circadian rhythms in Arabidopsis thaliana
2015
Highlight Cyclic expression of copper transport and the responses to copper deficiency are integrated into the light and circadian–oscillator signalling in plants.
Improved Mesophyll Protoplast Culture and Plant Regeneration in Arabidopsis thaliana (L.) Heynh., Genotype Landsberg Erecta
1993
Summary The response of in vitro cultured Arabidopsis thaliana mesophyll protoplasts was investigated with the aim of characterising the crucial factors that affect plating efficiencies and plant regeneration. We selected the genotype Landsberg erecta, which is frequently used for genetic studies, but which is known to respond poorly in protoplast culture. Factors permitting vigorous vegetative growth of the donor plants, i.e. short light period and avoidance of high temperature, were found to be advantageous. Selection of competent leaves and fractionation of protoplast populations indicated that predominantly protoplasts derived from still expanding, yet not highly immature mesophyll cell…
Multifactorial and Species-Specific Feedback Regulation of the RNA Surveillance Pathway Nonsense-Mediated Decay in Plants
2018
Abstract Nonsense-mediated decay (NMD) is an RNA surveillance mechanism that detects aberrant transcript features and triggers degradation of erroneous as well as physiological RNAs. Originally considered to be constitutive, NMD is now recognized to be tightly controlled in response to inherent signals and diverse stresses. To gain a better understanding of NMD regulation and its functional implications, we systematically examined feedback control of the central NMD components in two dicot and one monocot species. On the basis of the analysis of transcript features, turnover rates and steady-state levels, up-frameshift (UPF) 1, UPF3 and suppressor of morphological defects on genitalia (SMG)…
The intracellular Arabidopsis COPT5 transport protein is required for photosynthetic electron transport under severe copper deficiency
2011
Copper is an essential micronutrient that functions as a redox cofactor in multiple plant processes, including photosynthesis. Arabidopsis thaliana possesses a conserved family of CTR-like high-affinity copper transport proteins denoted as COPT1-5. COPT1, the only family member that is functionally characterized, participates in plant copper acquisition. However, little is known about the function of the other Arabidopsis COPT proteins in the transport and distribution of copper. Here, we show that a functional fusion of COPT5 to the green fluorescent protein localizes in Arabidopsis cells to the prevacuolar compartment. Plants defective in COPT5 do not exhibit any significant phenotype und…