Search results for "The Standard Model"
showing 10 items of 466 documents
Shell-model study on event rates of lightest supersymmetric particles scattering offKr83andTe125
2016
We investigate the elastic and inelastic scattering of lightest supersymmetric particle (LSP) dark matter off two possible target nuclei, $^{83}\mathrm{Kr}$ and $^{125}\mathrm{Te}$. For the nuclear-structure calculations, we employ the nuclear shell model using recently generated realistic interactions. We have condensed the nuclear-physics contribution to a set of nuclear-structure factors that are independent of the adopted supersymmetric (SUSY) model. Total event rates are then easily calculated by combining the nuclear-structure factors with SUSY parameters of choice. In particular, $^{125}\mathrm{Te}$ shows promise as a detector material with both the elastic and inelastic channels yie…
CPAsymmetries inB0Decays in the Left-Right Model
1998
We study time dependent CP asymmetries in B^0_{d,s} decays in the left-right model with spontaneous breakdown of CP. Due to the new contributions to B^0-\bar B^0 mixing the CP asymmetries can be substantially modified. Moreover, there can be significant new contributions to the $B$-meson decay amplitudes from the magnetic penguins. Most promising for detection of the new physics in the planned $B$ factories is that the CP asymmetries in the decays B--> J/\psi K_S and B--> \phi K_S which are supposed to be equal in the standard model can differ significantly in this class of models independently of the results in the measurements of B--> X_s \gamma.
Update on the b→s anomalies
2019
We present a brief update of our model-independent analyses of the b->s data presented in the articles published in Phys. Rev. D96 (2017) 095034 and Phys. Rev. D98 (2018) 095027 based on new data on R_K by LHCb, on R_{K^*} by Belle, and on B_{s,d}-> mu^+ mu^- by ATLAS.
Electroweak baryogenesis and dark matter from a singlet Higgs
2012
If the Higgs boson H couples to a singlet scalar S via lambda_m |H|^2 S^2, a strong electroweak phase transition can be induced through a large potential barrier that exists already at zero temperature. In this case properties of the phase transition can be computed analytically. We show that electroweak baryogenesis can be achieved using CP violation from a dimension-6 operator that couples S to the top-quark mass, suppressed by a new physics scale that can be well above 1 TeV. Moreover the singlet is a dark matter candidate whose relic density is < 3% of the total dark matter density, but which nevertheless interacts strongly enough with nuclei (through Higgs exchange) to be just below…
All-inclusive interacting dark sector cosmologies
2020
In this paper we explore possible extensions of Interacting Dark Energy cosmologies, where Dark Energy and Dark Matter interact non-gravitationally with one another. In particular, we focus on the neutrino sector, analyzing the effect of both neutrino masses and the effective number of neutrino species. We consider the Planck 2018 legacy release data combined with several other cosmological probes, finding no evidence for new physics in the dark radiation sector. The current neutrino constraints from cosmology should be therefore regarded as robust, as they are not strongly dependent on the dark sector physics, once all the available observations are combined. Namely, we find a total neutri…
Fascinating puzzle called double beta decay
2019
The question of whether neutrinos are Majorana or Dirac particles and what are their average masses remains one of the most fundamental problems in physics today. Observation of neutrinoless double beta decay (0νββ) would verify the Majorana nature of the neutrino and constrain the absolute scale of the neutrino mass spectrum. The inverse half-life for 0νββ-decay is given by the product of a phase space factor (PSF), a nuclear matrix element (NME), which both rely on theoretical description, and a function f containing the physics beyond the standard model. Recent calculations of PSF and NME will be reviewed together with comparison to other available results. These calculations serve the p…
A Monochromatic Neutrino Beam to Obtain U(e3) and the CP Phase
2007
The goal for future neutrino facilities is the determination of the [Ue3] mixing and CP violation in neutrino oscillations. This will require precision experiments with a very intense neutrino source. The future experiments such as T2K, NOVA and Double CHOOZ will measure the [Ue3] mixing. In order to explore CP violation, we present a novel method to create a monochromatic neutrino beam based on the recent discovery of nuclei that decay fast through electron capture in a superallowed Gamow-Teller transition. The boost of such radioactive ions will generate an intense monochromatic directional neutrino beam when decaying at high energy in a storage ring with long straight sections. We show t…
SU(2)×U(1)Gauge Invariance and the Shape of New Physics in RareBDecays
2014
New physics effects in B decays are routinely modeled through operators invariant under the strong and electromagnetic gauge symmetries. Assuming the scale for new physics is well above the electroweak scale, we further require invariance under the full standard model gauge symmetry group. Retaining up to dimension-six operators, we unveil new constraints between different new physics operators that are assumed to be independent in the standard phenomenological analyses. We illustrate this approach by analyzing the constraints on new physics from rare B(q) (semi-)leptonic decays.
Lepton Universality Tests with Kaons
2007
Precision data on Kl3 and Kl2 decay rates and form factors allow us to perform significant tests of lepton universality and to constrain the strength of non-standard interactions. The present status of these tests and new physics searches are discussed, as obtained by combining all the available results of the various kaon physics experiments.
Searching for new physics in bottomonium decays
2005
Heavy quarkonium decays can be used to search for New Physics beyond the Standard Model. In particular, a light Higgs boson could induce a slight (but observable) lepton universality breaking in Upsilon decays. In fact, current experimental data from CLEO presented in this Conference seem to point out to this direction within experimental accuracy. Moreover, LEP constraints on a light Higgs mass can be evaded by different models (like MSSM with a CPV Higgs sector) as shown in this Conference. We also consider spectroscopic consequences stemming from a possible mixing between Higgs and bottomonium states leading to discrepancies with the SM expectations (e.g. hyperfine splittings).