Search results for "Theoretical Computer Science"
showing 10 items of 1151 documents
Cholesky decomposition techniques in electronic structure theory
2011
We review recently developed methods to efficiently utilize the Cholesky decomposition technique in electronic structure calculations. The review starts with a brief introduction to the basics of the Cholesky decomposition technique. Subsequently, examples of applications of the technique to ab inito procedures are presented. The technique is demonstrated to be a special type of a resolution-of-identity or density-fitting scheme. This is followed by explicit examples of the Cholesky techniques used in orbital localization, computation of the exchange contribution to the Fock matrix, in MP2, gradient calculations, and so-called method specific Cholesky decomposition. Subsequently, examples o…
How does serendipity affect diversity in recommender systems? A serendipity-oriented greedy algorithm
2018
Most recommender systems suggest items that are popular among all users and similar to items a user usually consumes. As a result, the user receives recommendations that she/he is already familiar with or would find anyway, leading to low satisfaction. To overcome this problem, a recommender system should suggest novel, relevant and unexpected i.e., serendipitous items. In this paper, we propose a serendipity-oriented, reranking algorithm called a serendipity-oriented greedy (SOG) algorithm, which improves serendipity of recommendations through feature diversification and helps overcome the overspecialization problem. To evaluate our algorithm, we employed the only publicly available datase…
Structured Output SVM for Remote Sensing Image Classification
2011
Traditional kernel classifiers assume independence among the classification outputs. As a consequence, each misclassification receives the same weight in the loss function. Moreover, the kernel function only takes into account the similarity between input values and ignores possible relationships between the classes to be predicted. These assumptions are not consistent for most of real-life problems. In the particular case of remote sensing data, this is not a good assumption either. Segmentation of images acquired by airborne or satellite sensors is a very active field of research in which one tries to classify a pixel into a predefined set of classes of interest (e.g. water, grass, trees,…
Testbed evaluation of optimized REACT over multi-hop paths
2018
REACT is a distributed resource allocation protocol that computes a max-min allocation of airtime for mesh networks. The allocation adapts automatically to changes in local traffic load and in local network views. SALT, a new contention window tuning algorithm, ensures that each node secures the airtime allocated to it by REACT. REACT and SALT are extended to the multi-hop flow scenario with the introduction of a new airtime reservation algorithm. With a reservation in place, multi-hop TCP flows show increased throughput when running over SALT and REACT compared to running over 802.11 DCF. All results are obtained from experimentation on the w-iLab.t wireless network testbed in Belgium.
A mechanism of coalition formation in the metaphor of politics multiagent architecture
2003
Hybrid Multi-Agent Architectures allow the support of mobile robots colonies moving in dynamic, not predictable and time variable environments in order to achieve distributed solving strategies that develop collective team-oriented behaviors for solving complicate and difficult tasks. The development of a new robotic architecture for the coordination of a robot colonies in dangerous, unknown and dynamic environment is outlined. The name of this new architecture is Metaphor of Politics (MP), because it loosely takes inspiration from the political organizations of democratic governments.
A Generic Approach to Scheduling and Checkpointing Workflows
2018
This work deals with scheduling and checkpointing strategies to execute scientific workflows on failure-prone large-scale platforms. To the best of our knowledge, this work is the first to target fail-stop errors for arbitrary workflows. Most previous work addresses soft errors, which corrupt the task being executed by a processor but do not cause the entire memory of that processor to be lost, contrarily to fail-stop errors. We revisit classical mapping heuristics such as HEFT and MinMin and complement them with several checkpointing strategies. The objective is to derive an efficient trade-off between checkpointing every task (CkptAll), which is an overkill when failures are rare events, …
Data Mining in Cancer Research [Application Notes
2010
This article is not intended as a comprehensive survey of data mining applications in cancer. Rather, it provides starting points for further, more targeted, literature searches, by embarking on a guided tour of computational intelligence applications in cancer medicine, structured in increasing order of the physical scales of biological processes.
On conditional probabilities and their canonical extensions to Boolean algebras of compound conditionals
2023
In this paper we investigate canonical extensions of conditional probabilities to Boolean algebras of conditionals. Before entering into the probabilistic setting, we first prove that the lattice order relation of every Boolean algebra of conditionals can be characterized in terms of the well-known order relation given by Goodman and Nguyen. Then, as an interesting methodological tool, we show that canonical extensions behave well with respect to conditional subalgebras. As a consequence, we prove that a canonical extension and its original conditional probability agree on basic conditionals. Moreover, we verify that the probability of conjunctions and disjunctions of conditionals in a rece…
On utilizing dependence-based information to enhance micro-aggregation for secure statistical databases
2011
Published version of an article in the journal: Pattern Analysis and Applications. Also available from the publisher at: http://dx.doi.org/10.1007/s10044-011-0199-9 We consider the micro-aggregation problem which involves partitioning a set of individual records in a micro-data file into a number of mutually exclusive and exhaustive groups. This problem, which seeks for the best partition of the micro-data file, is known to be NP-hard, and has been tackled using many heuristic solutions. In this paper, we would like to demonstrate that in the process of developing micro-aggregation techniques (MATs), it is expedient to incorporate information about the dependence between the random variable…
Extracting modular-based backbones in weighted networks
2021
Abstract Networks are an adequate representation for modeling and analyzing a great variety of complex systems. However, understanding networks with millions of nodes and billions of connections can be pretty challenging due to memory and time constraints. Therefore, selecting the relevant nodes and edges of these large-scale networks while preserving their core information is a major issue. In most cases, the so-called backbone extraction methods are based either on coarse-graining or filtering approaches. Coarse-graining techniques reduce the network size by gathering similar nodes into super-nodes, while filter-based methods eliminate nodes or edges according to a statistical property.In…