Search results for "Theoretical Computer Science"
showing 10 items of 1151 documents
On a Conjecture on Bidimensional Words
2003
We prove that, given a double sequence w over the alphabet A (i.e. a mapping from Z2 to A), if there exists a pair (n0, m0) ∈ Z2 such that pw(n0, m0) < 1/100n0m0, then w has a periodicity vector, where pw is the complexity function in rectangles of w.
Unary Languages Recognized by Two-Way One-Counter Automata
2014
A two-way deterministic finite state automaton with one counter (2D1CA) is a fundamental computational model that has been examined in many different aspects since sixties, but we know little about its power in the case of unary languages. Up to our knowledge, the only known unary nonregular languages recognized by 2D1CAs are those formed by strings having exponential length, where the exponents form some trivial unary regular language. In this paper, we present some non-trivial subsets of these languages. By using the input head as a second counter, we present simulations of two-way deterministic finite automata with linearly bounded counters and linear–space Turing machines. We also show …
Dichotomies properties on computational complexity of S-packing coloring problems
2015
This work establishes the complexity class of several instances of the S -packing coloring problem: for a graph G , a positive integer k and a nondecreasing list of integers S = ( s 1 , ? , s k ) , G is S -colorable if its vertices can be partitioned into sets S i , i = 1 , ? , k , where each S i is an s i -packing (a set of vertices at pairwise distance greater than s i ). In particular we prove a dichotomy between NP-complete problems and polynomial-time solvable problems for lists of at most four integers.
On Physical Problems that are Slightly More Difficult than QMA
2013
We study the complexity of computational problems from quantum physics. Typically, they are studied using the complexity class QMA (quantum counterpart of NP) but some natural computational problems appear to be slightly harder than QMA. We introduce new complexity classes consisting of problems that are solvable with a small number of queries to a QMA oracle and use these complexity classes to quantify the complexity of several natural computational problems (for example, the complexity of estimating the spectral gap of a Hamiltonian).
The Alternating BWT: an algorithmic perspective
2020
Abstract The Burrows-Wheeler Transform (BWT) is a word transformation introduced in 1994 for Data Compression. It has become a fundamental tool for designing self-indexing data structures, with important applications in several areas in science and engineering. The Alternating Burrows-Wheeler Transform (ABWT) is another transformation recently introduced in Gessel et al. (2012) [21] and studied in the field of Combinatorics on Words. It is analogous to the BWT, except that it uses an alternating lexicographical order instead of the usual one. Building on results in Giancarlo et al. (2018) [23] , where we have shown that BWT and ABWT are part of a larger class of reversible transformations, …
Classical sequences revisited with permutations avoiding dotted pattern
2011
International audience; Inspired by the definition of the barred pattern-avoiding permutation, we introduce the new concept of dotted pattern for permutations. We investigate permutations classes avoiding dotted patterns of length at most 3, possibly along with other classical patterns. We deduce some enumerating results which allow us to exhibit new families of permutations counted by the classical sequences: 2^n, Catalan, Motzkin, Pell, Fibonacci, Fine, Riordan, Padovan, Eulerian.
Nondeterministic operations on finite relational structures
1998
Abstract This article builds on a tutorial introduction to universal algebra for language theory (Courcelle, Theoret. Comput. Sci. 163 (1996) 1–54) and extends it in two directions. First, nondeterministic operations are considered, i.e., operations which give a set of results instead of a single one. Most of their properties concerning recognizability and equational definability carry over from the ordinary case with minor modifications. Second, inductive sets of evaluations are studied in greater detail. It seems that they are handled most naturally in the framework presented here. We consider the analogues of top-down and bottom-up tree transducers. Again, most of their closure propertie…
On extremal cases of Hopcroft’s algorithm
2010
AbstractIn this paper we consider the problem of minimization of deterministic finite automata (DFA) with reference to Hopcroft’s algorithm. Hopcroft’s algorithm has several degrees of freedom, so there can exist different executions that can lead to different sequences of refinements of the set of the states up to the final partition. We find an infinite family of binary automata for which such a process is unique, whatever strategy is chosen. Some recent papers (cf. Berstel and Carton (2004) [3], Castiglione et al. (2008) [6] and Berstel et al. (2009) [1]) have been devoted to find families of automata for which Hopcroft’s algorithm has its worst execution time. They are unary automata as…
On block pumpable languages
2016
Ehrenfeucht, Parikh and Rozenberg gave an interesting characterisation of the regular languages called the block pumping property. When requiring this property only with respect to members of the language but not with respect to nonmembers, one gets the notion of block pumpable languages. It is shown that these block pumpable are a more general concept than regular languages and that they are an interesting notion of their own: they are closed under intersection, union and homomorphism by transducers; they admit multiple pumping; they have either polynomial or exponential growth.
Algebraic Structures of Rough Sets in Representative Approximation Spaces
2003
Abstract In this paper a generalized notion of an approximation space is considered. By an approximation space we mean an ordered pair (U, C ), where U is a finite nonempty set and C is a covering of U. According to connections between rough sets and concepts we define two types of approximation operations. Hence we obtain two families of rough sets. We show that these families form lattices in special types of representative approximation spaces. The operations on rough sets defined in the above lattices are analogous to classical operations on sets.