Search results for "Theoretical Computer Science"
showing 10 items of 1151 documents
Psi4: an open-source ab initio electronic structure program
2011
The Psi4 program is a new approach to modern quantum chemistry, encompassing Hartree–Fock and density-functional theory to configuration interaction and coupled cluster. The program is written entirely in C++ and relies on a new infrastructure that has been designed to permit high-efficiency computations of both standard and emerging electronic structure methods on conventional and high-performance parallel computer architectures. Psi4 offers flexible user input built on the Python scripting language that enables both new and experienced users to make full use of the program's capabilities, and even to implement new functionality with moderate effort. To maximize its impact and usefulness, …
k-Truss Decomposition for Modular Centrality
2018
There is currently much interest in identifying influential spreaders in complex networks due to many applications concerned, such as controlling the outbreak of epidemics and conducting advertisements for commercial products, and so on. A plethora of centrality measures have been proposed over the years based on the topological properties of networks. However, most of these classical centrality measures fail to select the most influential nodes in networks with a modular structure despite that it is an omnipresent property in real-world networks. Few authors have introduced centrality measures tailored to networks with community structure. In a recent work, we have shown that, in this case…
Conclusions: Take-Home Messages
2014
In this chapter, which mainly consists of headlines, the take-home messages of the lecture notes are presented.
How much geometry it takes to reconstruct a 2-manifold in R 3
2009
Known algorithms for reconstructing a 2-manifold from a point sample in R 3 are naturally based on decisions/predicates that take the geometry of the point sample into account. Facing the always present problem of round-off errors that easily compromise the exactness of those predicate decisions, an exact and robust implementation of these algorithms is far from being trivial and typically requires employment of advanced datatypes for exact arithmetic, as provided by libraries like CORE, LEDA, or GMP. In this article, we present a new reconstruction algorithm, one whose main novelties is to throw away geometry information early on in the reconstruction process and to mainly operate combina…
Non-interleaved Quadtree Node Codification
2004
The usual quadtree node non-pointer codification is based on interleaved binary representations of node coordinates, in such a way that every operation that concerns to the spatial position or to the specific orientation of the region represented by the node needs to undo this interleaving process. So, the computation time of such operations is linear with the node depth. In this paper an alternative codification is presented called “non-interleaved codification”. The new codification has a simpler management and a higher intuitiveness than current codifications that use the interleaving approach. The proposed codification is more efficient than previous ones for the following set of operat…
Dictionary-symbolwise flexible parsing
2012
AbstractLinear-time optimal parsing algorithms are rare in the dictionary-based branch of the data compression theory. A recent result is the Flexible Parsing algorithm of Matias and Sahinalp (1999) that works when the dictionary is prefix closed and the encoding of dictionary pointers has a constant cost. We present the Dictionary-Symbolwise Flexible Parsing algorithm that is optimal for prefix-closed dictionaries and any symbolwise compressor under some natural hypothesis. In the case of LZ78-like algorithms with variable costs and any, linear as usual, symbolwise compressor we show how to implement our parsing algorithm in linear time. In the case of LZ77-like dictionaries and any symbol…
HOW SMART DOES AN AGENT NEED TO BE?
2005
The classic distributed computation is done by atoms, molecules or spins in vast numbers, each equipped with nothing more than the knowledge of their immediate neighborhood and the rules of statistical mechanics. These agents, 1023 or more, are able to form liquids and solids from gases, realize extremely complex ordered states, such as liquid crystals, and even decode encrypted messages. We will describe a study done for a sensor-array "challenge problem" in which we have based our approach on old-fashioned simulated annealing to accomplish target acquisition and tracking under the rules of statistical mechanics. We believe the many additional constraints that occur in the real problem ca…
Soft Pyramid Symmetry Transforms
2005
Pyramid computation is a natural paradigm of computation in planning strategies and multi-resolution image analysis. This paper introduces a new paradigm that is based on the concept of soft-hierarchical operators implemented in a pyramid architecture to retrieve global versus local symmetries. The concept of symmetry is mathematically well defined in geometry whenever patterns are crisp images (two levels). Necessity for a soft approach occurs whenever images are multi-levels and the separation between object and background is subjective or not well defined. The paper describes a new pyramid operator to detect symmetries and shows some experiments supporting the approach. This work has bee…
A Tool for Implementing and Exploring SBM Models: Universal 1D Invertible Cellular Automata
2005
The easiest form of designing Cellular Automata rules with features such as invertibility or particle conserving is to rely on a partitioning scheme, the most important of which is the 2D Margolus neighborhood. In this paper we introduce a 1D Margolus-like neighborhood that gives support to a complete set of Cellular Automata models. We present a set of models called Sliding Ball Models based on this neighborhood and capable of universal computation. We show the way of designing logic gates with these models, propose a digital structure to implement them and finally we present SBMTool, a software development system capable of working with the new models.
The heterogeneity of inter-domain Internet application flows: entropic analysis and flow graph modelling
2013
The growing popularity of the Internet has triggered the proliferation of various applications, which possess diverse communication patterns and user behaviour. In this paper, the heterogeneous characteristics of Internet applications and traffic are investigated from a complex network and entropic perspective. On the basis of real-life flow data collected from a public network provided by an Internet service provider, flow graphs are constructed for five types of applications as follows: Web, P2P Download, P2P Stream, Video Stream and Instant Messaging. Three types of entropy measures are introduced to the flow graphs, and the heterogeneity of applications within a 24-h period is analysed …