Search results for "Theoretical physics"
showing 10 items of 751 documents
EPPS16: Nuclear parton distributions with LHC data
2017
We introduce a global analysis of collinearly factorized nuclear parton distribution functions (PDFs) including, for the first time, data constraints from LHC proton-lead collisions. In comparison to our previous analysis, EPS09, where data only from charged-lepton-nucleus deep inelastic scattering (DIS), Drell-Yan (DY) dilepton production in proton-nucleus collisions and inclusive pion production in deuteron-nucleus collisions were the input, we now increase the variety of data constraints to cover also neutrino-nucleus DIS and low-mass DY production in pion-nucleus collisions. The new LHC data significantly extend the kinematic reach of the data constraints. We now allow much more freedom…
Gravitational Imprints of Flavor Hierarchies
2020
The mass hierarchy among the three generations of quarks and charged leptons is one of the greatest mysteries in particle physics. In various flavor models, the origin of this phenomenon is attributed to a series of hierarchical spontaneous symmetry breakings, most of which are beyond the reach of particle colliders. We point out that the observation of a multi-peaked stochastic gravitational wave signal from a series of cosmological phase transitions could well be a unique probe of the mechanism behind flavor hierarchies. To illustrate this point, we show how near future ground- and space-based gravitational wave observatories could detect up to three peaks in the recently proposed $PS^3$ …
Direct CP violation in ${K^0\to\pi\pi}$ : Standard Model Status
2017
In 1988 the NA31 experiment presented the first evidence of direct CP violation in the $K^0\to\pi\pi$ decay amplitudes. A clear signal with a $7.2\,\sigma$ statistical significance was later established with the full data samples from the NA31, E731, NA48 and KTeV experiments, confirming that CP violation is associated with a $\Delta S=1$ quark transition, as predicted by the Standard Model. However, the theoretical prediction for the measured ratio $\varepsilon'/\varepsilon$ has been a subject of strong controversy along the years. Although the underlying physics was already clarified in 2001, the recent release of improved lattice data has revived again the theoretical debate. We review t…
New method for determining the quark-gluon vertex
2014
We present a novel nonperturbative approach for calculating the form factors of the quark-gluon vertex, in a general covariant gauge. The key ingredient of this method is the exact all-order relation connecting the conventional quark-gluon vertex with the corresponding vertex of the background field method, which is Abelian-like. When this latter relation is combined with the standard gauge technique, supplemented by a crucial set of transverse Ward identities, it allows the approximate determination of the nonperturbative behavior of all twelve form factors comprising the quark-gluon vertex, for arbitrary values of the momenta. The actual implementation of this procedure is carried out in …
Hadron correlators and the structure of the quark propagator
1994
The structure of the quark propagator of $QCD$ in a confining background is not known. We make an Ansatz for it, as hinted by a particular mechanism for confinement, and analyze its implications in the meson and baryon correlators. We connect the various terms in the K\"allen-Lehmann representation of the quark propagator with appropriate combinations of hadron correlators, which may ultimately be calculated in lattice $QCD$. Furthermore, using the positivity of the path integral measure for vector like theories, we reanalyze some mass inequalities in our formalism. A curiosity of the analysis is that, the exotic components of the propagator (axial and tensor), produce terms in the hadron c…
Hidden beauty molecules within the local hidden gauge approach and heavy quark spin symmetry
2013
Using a coupled channel unitary approach, combining the heavy quark spin symmetry and the dynamics of the local hidden gauge, we investigate the meson-meson interaction with hidden beauty and obtain several new states. Both I = 0 and I = 1 states are analyzed, and it is shown that in the I = 1 sector, the interactions are too weak to create any bound states within our framework. In total, we predict with confidence the existence of six bound states and six more possible weakly bound states. The existence of these weakly bound states depends on the influence of the coupled channel effects.
Triangular mass matrices of quarks and Cabibbo-Kobayashi-Maskawa mixing
1998
Every nonsingular fermion mass matrix, by an appropriate unitary transformation of right-chiral fields, is equivalent to a triangular matrix. Using the freedom in choosing bases of right-chiral fields in the minimal standard model, reduction to triangular form reduces the well-known ambiguities in reconstructing a mass matrix to trivial phase redefinitions. Furthermore, diagonalization of the quark mass sectors can be shifted to one charge sector only, without loosing the concise and economic triangular form. The corresponding effective triangular mass matrix is reconstructed, up to trivial phases, from the moduli of the CKM matrix elements, and vice versa, in a unique way. A new formula fo…
Dimensionally regularized box and phase-space integrals involving gluons and massive quarks
1999
The basic box and phase space integrals needed to compute at second order the three-jet decay rate of the Z-boson into massive quarks are presented in this paper. Dimensional Regularization is used to regularize the infrared divergences that appear in intermediate steps. Finally, the cancellation of these divergences among the virtual and the real contributions is showed explicitly.
Relativistic SU(6) wave functions as the basis of modern approaches to hadronic wave functions
1991
The connections between various models of hadrons and the relativistic SU(6) wave functions are established. In formal terms and by concrete example it is shown how the Bargman-Wigner fields of freely moving quarks and antiquarks of equal velocity form the basis of the above approaches. This places modern attempts in their historical setting and allows for a more unified analysis of the various schemes.
Dipole operator constraints on composite Higgs models
2014
Flavour- and CP-violating electromagnetic or chromomagnetic dipole operators in the quark sector are generated in a large class of new physics models and are strongly constrained by measurements of the neutron electric dipole moment and observables sensitive to flavour-changing neutral currents, such as the $B\to X_s\gamma$ branching ratio and $\epsilon'/\epsilon$. After a model-independent discussion of the relevant constraints, we analyze these effects in models with partial compositeness, where the quarks get their masses by mixing with vector-like composite fermions. These scenarios can be seen as the low-energy limit of composite Higgs or warped extra dimensional models. We study diffe…