Search results for "Theorie"

showing 10 items of 354 documents

A tale of two portals: testing light, hidden new physics at future e + e − colliders

2017

We investigate the prospects for producing new, light, hidden states at a future $e^+ e^-$ collider in a Higgsed dark $U(1)_D$ model, which we call the Double Dark Portal model. The simultaneous presence of both vector and scalar portal couplings immediately modifies the Standard Model Higgsstrahlung channel, $e^+ e^- \to Zh$, at leading order in each coupling. In addition, each portal leads to complementary signals which can be probed at direct and indirect detection dark matter experiments. After accounting for current constraints from LEP and LHC, we demonstrate that a future $e^+ e^-$ Higgs factory will have unique and leading sensitivity to the two portal couplings by studying a host o…

Nuclear and High Energy PhysicsParticle physicsHiggs PhysicsPhysics beyond the Standard ModelDark matterScalar (mathematics)FOS: Physical sciences7. Clean energy01 natural sciencesHigh Energy Physics - Experimentlaw.inventionStandard ModelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)law0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsColliderCouplingPhysicsLarge Hadron Collider010308 nuclear & particles physicsCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyBeyond Standard ModelHiggs bosonlcsh:QC770-798High Energy Physics::ExperimentJournal of High Energy Physics
researchProduct

Novel mechanism for primordial perturbations in minimal extensions of the Standard Model

2020

Abstract We demonstrate that light spectator fields in their equilibrium can source sizeable CMB anisotropies through modulated reheating even in the absence of direct couplings to the inflaton. The effect arises when the phase space of the inflaton decay is modulated by the spectator which generates masses for the decay products. We call the mechanism indirect modulation and using the stochastic eigenvalue expansion show that it can source perturbations even four orders of magnitude larger than the observed amplitude. Importantly, the indirect mechanism is present in the Standard Model extended with right- handed neutrinos. For a minimally coupled Higgs boson this leads to a novel lower bo…

Nuclear and High Energy PhysicsParticle physicsHiggs Physicshiukkasfysiikka114 Physical sciences01 natural sciencesUpper and lower boundsPhysics Particles & FieldsStandard Model0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicscosmology of theories beyond the SM0206 Quantum PhysicsPhysicsScience & Technology0105 Mathematical Physics010308 nuclear & particles physicsHiggsin bosoniPhysicshep-thHigh Energy Physics::PhenomenologyHiggs physicshep-phInflatonCosmology of Theories beyond the SMNuclear & Particles PhysicsAmplitudeOrders of magnitude (time)Phase spacePhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma Physicsastro-ph.COHiggs bosonlcsh:QC770-798NeutrinoJournal of High Energy Physics
researchProduct

Supersymmetric type-III seesaw mechanism: Lepton flavor violation and LHC phenomenology

2013

We study a supersymmetric version of the type-III seesaw mechanism considering two variants of the model: a minimal version for explaining neutrino data with only two copies of 24 superfields and a model with three generations of 24-plets. The latter predicts, in general, rates for mu -> e gamma inconsistent with experimental data. However, this bound can be evaded if certain special conditions within the neutrino sector are fulfilled. In the case of two 24-plets, lepton flavor violation constraints can be satisfied much more easily. After specifying the corresponding regions in the minimal supergravity parameter space, we show that under favorable conditions one can test the corresponding …

Nuclear and High Energy PhysicsParticle physicsMassesPhysics beyond the Standard Model01 natural sciences0103 physical sciencesRoot-S=7 tev010306 general physicsRight-handed neutrinosPhysicsLarge Hadron ColliderElectroweak010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyElectroweak interactionFísicaNon-conservationSupersymmetrySeesaw mechanismUnificationGrand unified theoriesHigh Energy Physics::ExperimentNeutrinoModel higgs-bosonDecaysPhenomenology (particle physics)LeptonStandard model
researchProduct

On the validity of perturbative studies of the electroweak phase transition in the Two Higgs Doublet model

2019

Abstract Making use of a dimensionally-reduced effective theory at high temperature, we perform a nonperturbative study of the electroweak phase transition in the Two Higgs Doublet model. We focus on two phenomenologically allowed points in the parameter space, carrying out dynamical lattice simulations to determine the equilibrium properties of the transition. We discuss the shortcomings of conventional perturbative approaches based on the resummed effective potential — regarding the insufficient handling of infrared resummation but also the need to account for corrections beyond 1-loop order in the presence of large scalar couplings — and demonstrate that greater accuracy can be achieved …

Nuclear and High Energy PhysicsParticle physicsPhase transition530 PhysicsSTANDARD MODELFOS: Physical sciencesSECTORParameter space114 Physical sciences3D PHYSICS01 natural scienceslattice quantum field theoryCOSMOLOGY OF THEORIES BEYOND THE SMTwo-Higgs-doublet modelHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)BARYON ASYMMETRY0103 physical sciencesEffective field theoryeffective field theorieslcsh:Nuclear and particle physics. Atomic energy. RadioactivityResummation010306 general physicscosmology of theories beyond the SMLATTICE QUANTUM FIELD THEORYPhysicsPP COLLISIONS010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyElectroweak interactionBOSONTHERMAL FIELD THEORYBARYOGENESISthermal field theoryLATTICEHigh Energy Physics - PhenomenologyCP-VIOLATIONTEMPERATURE DIMENSIONAL REDUCTIONlcsh:QC770-798EFFECTIVE FIELD THEORIES
researchProduct

Probes of the Standard Model effective field theory extended with a right-handed neutrino

2019

If neutrinos are Dirac particles and, as suggested by the so far null LHC results, any new physics lies at energies well above the electroweak scale, the Standard Model effective field theory has to be extended with operators involving the right-handed neutrinos. In this paper, we study this effective field theory and set constraints on the different dimension-six interactions. To that aim, we use LHC searches for associated production of light (and tau) leptons with missing energy, monojet searches, as well as pion and tau decays. Our bounds are generally above the TeV for order one couplings. One particular exception is given by operators involving top quarks. These provide new signals in…

Nuclear and High Energy PhysicsParticle physicsPhysics beyond the Standard ModelFOS: Physical sciencesComputer Science::Digital Libraries01 natural sciencesHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)0103 physical sciencesEffective field theoryNeutrino Physicslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsPhysicsLarge Hadron ColliderMissing energy010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyEffective Field TheoriesNeutrino physicsHigh Energy Physics - PhenomenologyBeyond Standard ModelComputer Science::Mathematical Softwarelcsh:QC770-798High Energy Physics::ExperimentNeutrinoElectroweak scaleLeptonJournal of High Energy Physics
researchProduct

Quintessence, inflation and baryogenesis from a single pseudo-Nambu-Goldstone boson

2007

15 pages, 3 figures.-- ISI Article Identifier: 000250759700079.-- ArXiv pre-print available at: http://arxiv.org/abs/0707.3999

Nuclear and High Energy PhysicsParticle physicsProton decayCosmic microwave backgroundGenerationFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicssymbols.namesakePlanckBosonPhysicsHigh Energy Physics::PhenomenologyAstrophysics (astro-ph)BaryogenesisFísicaCosmology of Theories beyond the SMWater Cherenkov DetectorBaryogenesisGoldstone bosonLeptogenesissymbolsDark energyHigh Energy Physics::ExperimentQuintessence
researchProduct

Consistent searches for SMEFT effects in non-resonant dijet events

2018

We investigate the bounds which can be placed on generic new-physics contributions to dijet production at the LHC using the framework of the Standard Model Effective Field Theory, deriving the first consistently-treated EFT bounds from non-resonant high-energy data. We recast an analysis searching for quark compositeness, equivalent to treating the SM with one higher-dimensional operator as a complete UV model. In order to reach consistent, model-independent EFT conclusions, it is necessary to truncate the EFT effects consistently at order $1/\Lambda^2$ and to include the possibility of multiple operators simultaneously contributing to the observables, neither of which has been done in prev…

Nuclear and High Energy PhysicsParticle physicsTevatronFOS: Physical sciencesParameter space01 natural sciencesHigh Energy Physics - ExperimentStandard ModelHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)Perturbative QCD0103 physical sciencesEffective field theorylcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsLinear combinationPhysicsLarge Hadron Collider010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyEffective Field TheoriesTechnicolor and Composite ModelsObservableWeinberg angleHigh Energy Physics - PhenomenologyBeyond Standard Modellcsh:QC770-798Journal of High Energy Physics
researchProduct

The HiggsTools handbook: a beginners guide to decoding the Higgs sector

2018

This report summarises some of the activities of the HiggsTools initial training network working group in the period 2015–2017. The main goal of this working group was to produce a document discussing various aspects of state-of-the-art Higgs physics at the large hadron collider (LHC) in a pedagogic manner. The first part of the report is devoted to a description of phenomenological searches for new physics (NP) at the LHC. All of the available studies of the couplings of the new resonance discovered in 2012 by the ATLAS and CMS experiments (Aad et al (ATLAS Collaboration) 2012 Phys. Lett. B 716 1–29; Chatrchyan et al (CMS Collaboration) 2012 Phys. Lett. B 716 30–61) conclude that it is com…

Nuclear and High Energy PhysicsParticle physicsTop quarkcoupling [Higgs particle]Higgs particle: decayHiggs bosonPhysics beyond the Standard Modelmomentum spectrum [transverse momentum]01 natural sciencesStandard ModelHiggs sectortransverse momentum: momentum spectrumeffective field theoryeffective field theories; Higgs boson; Higgs momentum distributions; LHC physics; new physics searchessearch for [new physics][ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesEffective field theory[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]effective field theoriesddc:530effective field theorie010306 general physicsMonte CarloPhysicsLHC physicLarge Hadron ColliderHiggs particle: coupling010308 nuclear & particles physicsHiggs momentum distributionsnew physics: search forElectroweak interactionHigh Energy Physics::PhenomenologyLHC physicsnew physics searchedecay [Higgs particle]two-photon [final state]Higgs momentum distributionproduction [Higgs particle]CERN LHC CollHiggs particle: production[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Higgs bosonnew physics searches[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experimentfinal state: two-photon
researchProduct

Cosmology with a very light Lμ − Lτ gauge boson

2019

In this paper, we explore in detail the cosmological implications of an abelian L − L gauge extension of the Standard Model featuring a light and weakly coupled Z′. Such a scenario is motivated by the longstanding ∼ 4σ discrepancy between the measured and predicted values of the muon’s anomalous magnetic moment, (g − 2) , as well as the tension between late and early time determinations of the Hubble constant. If sufficiently light, the Z′ population will decay to neutrinos, increasing the overall energy density of radiation and altering the expansion history of the early universe. We identify two distinct regions of parameter space in this model in which the Hubble tension can be significa…

Nuclear and High Energy PhysicsParticle physicscosmological modelZ': couplingPopulationNeutrino decoupling01 natural sciences7. Clean energygauge boson: abeliansymbols.namesakeradiation: density0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityenergy: densityNeutrino Physics010306 general physicseducationPhysicsGauge bosoneducation.field_of_studyMuonHubble constantAnomalous magnetic dipole momentspace-time: expansionmuon: magnetic moment010308 nuclear & particles physicsCoupling (probability)Cosmology of Theories beyond the SMHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Beyond Standard Modelsymbolslcsh:QC770-798Neutrino[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]neutrino: decouplingAstrophysics - Cosmology and Nongalactic AstrophysicsHubble's lawJournal of High Energy Physics
researchProduct

Dark photon dark matter in the presence of inhomogeneous structure

2020

Dark photon dark matter will resonantly convert into visible photons when the dark photon mass is equal to the plasma frequency of the ambient medium. In cosmological contexts, this transition leads to an extremely efficient, albeit short-lived, heating of the surrounding gas. Existing work in this field has been predominantly focused on understanding the implications of these resonant transitions in the limit that the plasma frequency of the Universe can be treated as being perfectly homogeneous, i.e. neglecting inhomogeneities in the electron number density. In this work we focus on the implications of heating from dark photon dark matter in the presence of inhomogeneous structure (which …

Nuclear and High Energy PhysicsPhotonCosmology and Nongalactic Astrophysics (astro-ph.CO)Dark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsPlasma oscillation01 natural sciencesDark photon[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]High Energy Physics - Phenomenology (hep-ph)0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. RadioactivityThermal Field Theory010306 general physicsReionizationPhysicsRange (particle radiation)010308 nuclear & particles physicsStar formationFísicaCosmology of Theories beyond the SMHigh Energy Physics - PhenomenologyOrders of magnitude (time)[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]lcsh:QC770-798Astrophysics - Cosmology and Nongalactic AstrophysicsJournal of High Energy Physics
researchProduct