Search results for "Thermal Analysis"
showing 10 items of 208 documents
Effect of Variable Valence Ion Doping on the Dielectric Properties of BaTiO3–Based Materials
2014
Dielectric properties of BaTiO3, BaTiO3 + 0.1 wt.% Fe2O3 and BaTiO3 + 1 wt.% Fe2O3 ceramics were studied. The dielectric measurements were performed at the temperature ranging from 130 K to 500 K and at the frequency ranging from 0.1 Hz to 10 MHz. Phase transitions were also determined by a thermal analysis in a wide temperature range. Both thermal analysis and electrical characterization techniques show that the temperature of phase transition is shifted towards lower temperatures with increasing Fe2O3 content. The changes and diversity of the observed phase transition temperatures occurred as a consequence of the ion substitution. Such behaviour of the investigated polycrystalline materia…
Excited state absorption and energy-transfer mechanisms of up-conversion luminescence in Er3+-doped oxyfluoride glass ceramics at different temperatu…
2010
Abstract Oxyfluoride silicate glass SiO2–Al2O3–Na2CO3–NaF–LaF3–ErF3 was synthesized. The glass transition and crystallization temperatures were determined by differential thermal analysis. Glass ceramics containing LaF3:Er3+ crystallites of size ∼20 nm were formed in the glass matrix after the heat treatment of the precursor glass in the vicinity of the crystallization temperature. Up-conversion luminescence, excitation spectra as well as time-resolved up-conversion luminescence of the glass and glass ceramics were studied at different temperatures. The up-conversion transients showed that at room temperature the dominant mechanism of the up-conversion luminescence in the glass ceramics is …
Spectroscopy of Very Hot Plasma in Non-flaring Parts of a Solar Limb Active Region: Spatial and Temporal Properties
2017
In this work we investigate the thermal structure of an off-limb active region (AR) in various non-flaring areas, as it provides key information on the way these structures are heated. In particular, we concentrate on the very hot component (>3 MK) as it is a crucial element to distinguish between different heating mechanisms. We present an analysis using Fe and Ca emission lines from both the Solar Ultraviolet Measurement of Emitted Radiation (SUMER) on board the Solar and Heliospheric Observatory (SOHO) and the EUV Imaging Spectrometer (EIS) on board Hinode. A data set covering all ionization stages from Fe X to Fe XIX has been used for the thermal analysis (both differential emission …
Advanced piezoresistive sensor achieved by amphiphilic nanointerfaces of graphene oxide and biodegradable polymer blends
2018
This work focuses on the preparation of a piezoresistive sensor device, by exploiting an amphiphilic sample of graphene oxide (GO) as a compatibilizer for poly (lactic acid) (PLA)-Poly (ethylene-glycol) (PEG) blends. The presence of GO determined a high stiffening and strengthening effect, without affecting toughness, and allowed a good stability of mechanical properties up to 40 days. Moreover, GO endowed the materials with electrical properties highly sensitive to pressure and strain variations: the biodegradable pressure sensor showed a responsivity of 35 μA/MPa from 0.6 to 8.5 MPa, a responsivity around 19 μA/MPa from 8.5 to 25 MPa. For lower pressure values (around 0.16–0.45 MPa), inst…
Novel hydrogels based on a polyasparthydrazide. Synthesis and characterization
2000
α,β-polyasparthydrazide (PAHy), a synthetic water-soluble biocompatible polymer, was chemically crosslinked with ethyleneglycol diglycidylether (EGDGE), in order to obtain water swellable microparticies. These were characterized by means of FT-IR spectrophotometry and by means of particle size distribution analysis. The mean pore size of the prepared gels as various crosslinking ratios and the fractal dimensions were determined by light scattering measurements. Swelling measurements gave evidence of the high affinity of PAHy-EGDGE microparticles towards aqueous media at different pH values. The physical state of the prepared networks was evaluated by means of X-rays diffractometry and therm…
A study of spalling behaviour of PAN fibre-reinforced concrete by thermal analysis
1993
Comparisons are made between polypropylene (PP) fibres and polyacrylonitrile (PAN) fibres in order to relate the thermal properties of fibres with the respective fibre mortar behaviour under thermal exposure. Thermogravimetry (TG), differential scanning calorimetry (DSC) and thermochromatography (ThGC) are utilized. When a cementitious fibre mortar is being heated, several physical phenomena occur in the temperature range between 100°C and 200°C. There is a significant difference in the thermal behaviour between PP and PAN fibres. PP fibres melt at 160–170°C. The non‐melting behaviour of PAN fibre together with its rapid exothermic degradation reactions at around 300°C may add risk to the s…
Further improvements in the structural analysis of DEMO Divertor Cassette body and design assessment according to RCC-MRx
2019
Abstract This paper presents the enhancements related to the structural analyses of DEMO Divertor in the framework of the EUROfusion Power Plant Physics & Technology (PPPT) program. This activity started two years ago and its preliminary results were published in previous papers. It has been divided in some areas defined by the similarity of the matters they contain: the structural analysis, of utmost importance, has been preceded by a preliminary phase, like the geometry definition or the thermal and the electric-magnetic analysis for loads evaluation; then the structural analysis has been finally confirmed with further evaluations related to excessive deformation or plastic instability. T…
Structural transformations in amorphous selenium as studied by the differential thermal analysis and exoelectron emission technique
2007
The parameters (temperature, activation energy) of the surface and volume glass transition (retrification process) in amorphous selenium produced by rapid quenching of the liquid phase have been determined using the EEE and DTA techniques. EEE is a surface effect connected with structural transformations in the surface layer whereas the DTA measurements give the information about the transformations occurring in the volume of the sample. It has been found that the surface retrification of selenium occurs with activation energy smaller than the volume retrification, both observed in the first heating run. The value of activation energy for the volume retrification measured in the second DTA …
Novel epoxy formulations for high energy radiation curable composites
2005
Abstract It has been widely recognised that high energy radiation can be effectively applied to the cure of epoxy resins in applications as composite matrices or structural adhesives with improvements in product quality and/or reduction in production costs. In the presence of suitable initiators, polymerisation of epoxies occurs via cationic mechanism, thus restricting the choice of the resin system components to species which do not contain electron donor groups. The present investigation is aimed to identify suitable co-monomers to be formulated with an epoxy resin, resulting in different cure reaction kinetics and application properties of the cured resin. In particular, four different a…
Structural investigation of e-beam cured epoxy resins through solid state NMR
2012
Abstract In this paper the network structure of e-beam cured DGEBF based epoxy resins is investigated. Two epoxy systems, having different reactivity and cured in different process conditions, were analyzed through solid state NMR spectroscopy. The analysis shows that the more reactive system has higher cross-linking density and higher uniformity of network distribution. Similar information were obtained, in a previous work, on the same systems through dynamic mechanical thermal analysis. It is worth noting that unlike DMTA tests, which interfere with the molecular structure of the analyzed material, due to the heating during the analysis itself, more reliable information, without any artef…