Search results for "Thermo-mechanic"

showing 10 items of 49 documents

Dielectric Spectroscopy of Recycled Polylactide

2014

The effects of multiple mechanical recycling on amorphous polylactide (PLA) were simulated by means of five successive injection-grinding cycles. The influence of the induced thermo-mechanical degradation on the dielectric properties of PLA was analysed. The relaxation spectra were studied in terms of the complex dielectric permittivity (ε0 and ε00) and the dielectric loss tangent, tg(d) in the frequency range from 102 to 107 Hz over the temperature interval from 0 C to 140 C. It was possible to distinguish two relaxations zones, one at low temperatures and high frequencies (b relaxation) and another at higher temperatures and lower frequencies (a relaxation). The individual relaxations wer…

Materials sciencePolymers and PlasticsThermodynamicsDielectricConductivityThermo-mechanical degradationsymbols.namesakeSegmental dynamicsDynamic fragilityMaterials ChemistryPoly(lactide) (PLA)RecyclingComposite materialResistència de materialsArrhenius equationMolar massCondensed Matter PhysicsDielectric spectroscopyAmorphous solidMechanics of MaterialsMAQUINAS Y MOTORES TERMICOSsymbolsRelaxation (physics)Dielectric lossMATEMATICA APLICADADielectric thermal analysis (DETA)
researchProduct

Experimental tests and thermo-mechanical analyses on the HEXCALIBER mock-up

2008

Abstract Within the framework of the R&D activities promoted by European Fusion Development Agreement on the helium-cooled pebble bed test blanket module to be irradiated in ITER, ENEA Brasimone and the Department of Nuclear Engineering of the University of Palermo performed intense research activities on the modelling of the thermo-mechanical behaviour of both beryllium and lithiated ceramics pebble beds, which are envisaged to be used, respectively, as neutron multiplier and tritium breeder. In particular, at the DIN a thermo mechanical constitutive model was developed for both lithiated ceramics and beryllium pebble beds and it was successfully implemented on a commercial finite element …

Materials scienceStructural materialMechanical EngineeringNuclear engineeringConstitutive equationchemistry.chemical_elementBlanketFinite element methodPebble beds Thermo-mechanical constitutive model HCPB-TBMNuclear Energy and EngineeringchemistryMockupGeneral Materials ScienceNeutronBerylliumPebbleSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineering
researchProduct

Thermo-mechanical analyses and ways of optimization of the helium cooled DEMO First Wall under RCC-MRx rules

2017

Abstract The EUROfusion Consortium develops a design of a fusion power demonstrator plant (DEMO) in the framework of the European “Horizon 2020” innovation and research program. One of the key components in the fusion reactor is the Breeding Blanket (BB) surrounding the plasma, ensuring tritium self-sufficiency, heat removal for conversion into electricity, and neutron shielding. Among the 4 candidates for the DEMO BB, 2 of them use helium as coolant (HCPB, HCLL), and another one (DCLL) uses helium to cool down the First Wall (FW) only. Due to uncertainties regarding the plasma Heat Flux (HF) load the DEMO BB integrated FW will have to cope with, a set of sensitive thermal and stress analys…

Materials scienceRCC-MRxNuclear engineeringchemistry.chemical_elementBlanket01 natural sciences7. Clean energy010305 fluids & plasmasStress (mechanics)[SPI]Engineering Sciences [physics]Materials Science(all)0103 physical sciencesGeneral Materials ScienceCast3M010306 general physicsDEMOHeliumSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringSteady stateBreeding BlanketMechanical EngineeringThermo-mechanicFusion powerCoolantFirst WallchemistryCreepHeat fluxNuclear Energy and EngineeringHCLLDEMO; Breeding; Blanket; HCLL; RCC-MRx; Thermo-mechanics; Cast3M; First WallMaterials Science (all)
researchProduct

A statistical design of experiments for optimizing the MALDI-TOF-MS sample preparation of polymers. An application in the assessment of the thermo-me…

2011

[EN] The sample preparation procedure for MALDI-TOF MS of polymers is addressed in this study by the application of a statistical Design of Experiments (DoE). Industrial poly (ethylene terephthalate) (PET) was chosen as model polymer. Different experimental settings (levels) for matrixes, analyte/matrix proportions and concentrations of cationization agent were considered. The quality parameters used for the analysis were signal-to-noise ratio and resolution. A closer inspection of the statistical results provided the study not only with the best combination of factors for the MALDI sample preparation, but also with a better understanding of the influence of the different factors, individua…

Solucions polimèriquesEthylenePolymersAnalytical chemistryDegradation kineticsBiochemistryThermo-mechanical degradationSample preparation procedureAnalytical ChemistryMatrix (chemical analysis)chemistry.chemical_compoundDegradationGlycolsMatrix assisted laser desorption ionization time of flight mass spectrometryPolyethylene terephthalateMechanismsCationizationSample preparationRecyclingMechanical recyclingSpectroscopyPriority journalchemistry.chemical_classificationDithranolSignal to noise ratioPolyethylene terephthalateHydrolysisMultiple processingPolymerPoly (ethylene terephthalate)Potential reactionsInjection cyclesMAQUINAS Y MOTORES TERMICOSInductively coupled plasmaSimulationEthersMatrix-assisted laser desorption/ionization time-of-flightQuality parametersDesign of ExperimentsGlycol unitsSample preparationArticleEthyleneEnvironmental ChemistryPolyethylene terephthalatesMALDI TOF MSSignal noise ratioMass spectrometryMatrixTermoplàsticsSignal to noiseTransesterificationDegradation mechanismMatrix-assisted laser desorption/ionizationStatistical design of experimentsTransesterificationchemistryChemical engineeringOligomersDesorptionEthylene glycolControlled studyProcess optimizationAnalytica chimica acta
researchProduct

Study of the thermo-mechanical performances of the IFMIF-EVEDA Lithium Test Loop target assembly

2012

Abstract Within the framework of the IFMIF R&D program and in close cooperation with ENEA-Brasimone, at the Department of Energy of the University of Palermo a research campaign has been launched to investigate the thermo-mechanical behavior of the target assembly under both steady state and start-up transient conditions. A theoretical approach based on the finite element method (FEM) has been followed and a well-known commercial code has been adopted. A realistic 3D FEM model of the target assembly has been set-up and optimized by running a mesh independency analysis. A proper set of loads and boundary conditions, mainly concerned with radiation heat transfer between the target assembly ex…

Steady stateMaterials scienceIFMIF Target assembly Thermo-mechanicsMechanical EngineeringNuclear engineeringLithium testFinite element methodLoop (topology)Hydrostatic testNuclear Energy and EngineeringHeat transferGeneral Materials ScienceTransient (oscillation)Boundary value problemSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringFusion Engineering and Design
researchProduct

A constitutive model for the thermo-mechanical behaviour of fusion-relevant pebble beds and its application to the simulation of HELICA mock-up exper…

2007

Abstract Within the framework of the R&D activities promoted by EFDA on the Helium-Cooled Pebble Bed Test Blanket Module to be irradiated in ITER, attention has been focused on the modelling of the thermo-mechanical behaviour of both beryllium and lithiated ceramic pebble beds that are envisaged to be used respectively as neutron multiplier and tritium breeder. This behaviour depends, mainly, on the reactor-relevant conditions, the pebble sizes and the breeder cell geometries and a general constitutive model has not yet been validated, especially for fusion-relevant applications. ENEA-Brasimone and the Department of Nuclear Engineering (DIN) of the University of Palermo have performed inten…

HCPB–TBMFusionMaterials scienceLithiated ceramic breederPebble-bed reactorMechanical EngineeringNuclear engineeringConstitutive equationThermo-mechanical constitutive modelBlanketFusion powerNuclear Energy and EngineeringMockupPebble bedGeneral Materials SciencePebbleThermo mechanicalSettore ING-IND/19 - Impianti NucleariCivil and Structural Engineering
researchProduct

Thermo-Mechanical Analysis and Design Update of the Top Cap Region of the DEMO Water-Cooled Lithium Lead Central Outboard Blanket Segment

2022

Within the framework of the EUROfusion research and development activities, the Water-Cooled Lithium Lead (WCLL) Breeding Blanket (BB) is one of the two candidates to be chosen as the driver blanket for the European DEMO nuclear fusion reactor. Hence, an intense research work is currently ongoing throughout the EU to develop a robust conceptual design able to fulfil the design requirements selected at the end of the DEMO pre-conceptual design phase. In this work, the thermo-mechanical analysis and the design update of the top cap (TC) region of the DEMO WCLL Central Out-board Blanket (COB) segment is presented. The scope of the work is to find a design solution of the WCLL COB TC region abl…

Fluid Flow and Transfer ProcessesTechnologyFEMQH301-705.5Thermo-mechanicsTPhysicsQC1-999Process Chemistry and TechnologyGeneral EngineeringDEMO; breeding blanket; WCLL; top cap; FEM; thermo-mechanicsEngineering (General). Civil engineering (General)Computer Science ApplicationsWCLLChemistryGeneral Materials ScienceBreeding blanketTA1-2040Biology (General)QD1-999InstrumentationDEMOSettore ING-IND/19 - Impianti NucleariTop cap
researchProduct

Thermal optimization of the Helium-Cooled Lithium Lead breeding zone layout design regarding TBR enhancement

2017

Abstract Within the framework of EUROfusion R&D activities, CEA-Saclay has carried out an investigation of the thermal and mechanical performances of alternative designs intended to enhance the Tritium Breeding Ratio (TBR) of the Helium-Cooled Lithium Lead (HCLL) Breeding Blanket (BB) for DEMO. Neutronic calculations performed on the 2014 DEMO HCLL baseline predicted a value of TBR equal to 1.07, lower than the required value of 1.1, necessary to ensure the tritium self-sufficiency of the breeding blanket taking into account uncertainties. In order to reach the TBR target, the strategy of the steel amount reduction inside the HCLL module breeding zone (BZ) has been followed by suppressing s…

Materials scienceNuclear engineeringFinite elementschemistry.chemical_elementDEMO HCLL Breeding blanket Thermo-mechanics Finite elements Cast3MBlanketcomputer.software_genre01 natural sciences7. Clean energy010305 fluids & plasmas[SPI]Engineering Sciences [physics]Materials Science(all)0103 physical sciencesThermalGeneral Materials ScienceCast3M010306 general physicsDEMOHeliumSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringThermo-mechanicsPage layoutMechanical EngineeringFinite element methodStiffeningchemistryNuclear Energy and EngineeringHCLLBreeding blanketReduction (mathematics)Loss-of-coolant accidentcomputerFusion Engineering and Design
researchProduct

Unconventional application of Image Correlation techniques on Biomaterials and cardiovascular applications

2022

Image Correlation techniques are increasing in popularity and are now suitable to investigate complex structural and fluid-dynamics of cardiovascular systems. These approaches operate through a digital correlation of a pair of images to determine physical quantities of complex systems. In this thesis, their application to the mechanical characterisation of complex biomaterials (Nitinol and soft materials), and the characterisation of complex biofluid-dynamics was investigated, with the aim to analyse their reliability and enhance their accuracy and field of application. Digital Image Correlation, supported by Infrared Thermography, was used to achieve a more in depth understanding of the me…

PIV techniqueSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineDIC techniqueMechanical characterisationHydrodynamic assessmentNitinolImage Correlation techniqueThermo-mechanical characterisation Large deformationHeart valve
researchProduct

Updated design and integration of the ancillary circuits for the European Test Blanket Systems

2019

The validation of the key technologies relevant for a DEMO Breeding Blanket is one of the main objectives of the design and operation of the Test Blanket Systems (TBS) in ITER. In compliance with the main features and technical requirements of the parent breeding blanket concepts, the European TBM Project is developing the HCLL (Helium Cooled Lithium Lead) and HCPB (Helium Cooled Pebble Bed)-TBS, focusing in this phase on the design life cycle and on R&D activities in support of the design. The TBS ancillary systems are mainly circuits devoted to the removal of thermal power and to the extraction and recovery of the tritium generated in the Test Blanket Modules. They are: • The Helium C…

Computer scienceThermo-mechanical analysiTest Blanket ModuleBlanketCAD integration; Test Blanket Module; Thermo-hydraulic analysis; Thermo-mechanical analysis; Tritium technologies01 natural sciences7. Clean energy010305 fluids & plasmasTritium technologiesConceptual design0103 physical sciencesGeneral Materials Science010306 general physicsSettore ING-IND/19 - Impianti NucleariCivil and Structural EngineeringElectronic circuitThermo-hydraulic analysisThermo-mechanical analysisMechanical EngineeringCAD integrationCoolantTest (assessment)Nuclear Energy and EngineeringPhysical spaceSystems engineeringThermo-hydraulic analysiFusion Engineering and Design
researchProduct