Search results for "Thermodynamic equilibrium"

showing 10 items of 80 documents

Notes on the Electroelastic Interaction in Joint Hamiltonian and Stochastic Treatment of Polarization Response

2008

Conventional Landau theory for ferroelectric phase instability is extended by entities accounting for the violation of thermodynamic equilibrium and the impact of thermal fluctuations. The physical content concerns Ginzburg-Landau type model Hamiltonians assigned to the mean field interaction of macroscopically small and microscopically large lattice cells affected by thermal fluctuations. A special topic derived in a systematic way is long range electroelastic interaction formally given by selfconsistent solution of the polarization and strain fields. Test solution for inhomogeneous strain in a slab is presented within the framework of lattice cell picture.

PhysicsThermodynamic equilibriumThermal fluctuationsCondensed Matter PhysicsPolarization (waves)Landau theoryElectronic Optical and Magnetic Materialssymbols.namesakeClassical mechanicsMean field theoryQuantum mechanicsLattice (order)symbolsGinzburg–Landau theoryHamiltonian (quantum mechanics)Ferroelectrics
researchProduct

Towards a nonequilibrium thermodynamic description of incoherent nonlinear optics

2007

pa href="http://oe.osa.org/virtual_issue.cfm?vid=36"Focus Serial: Frontiers of Nonlinear Optics/a/pThis concise review is aimed at providing an introduction to the kinetic theory of partially coherent optical waves propagating in nonlinear media. The subject of incoherent nonlinear optics received a renewed interest since the first experimental demonstration of incoherent solitons in slowly responding photorefractive crystals. Several theories have been successfully developed to provide a detailed description of the novel dynamical features inherent to partially coherent nonlinear optical waves. However, such theories leave unanswered the following important question: Which is the long term…

PhysicsWave propagationbusiness.industryThermodynamic equilibriumNon-equilibrium thermodynamicsOptical field01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasIrreversible processOpticsQuantum mechanicsNonlinear medium0103 physical sciencesThermodynamic limitCoherent states010306 general physicsbusinessComputingMilieux_MISCELLANEOUS
researchProduct

Wave-turbulence approach of supercontinuum generation: Influence of self-steepening and higher-order dispersion

2009

International audience; We analyze the influence of self-steepening and higher-order dispersion on the process of optical wave thermalization. This study is aimed at developing a thermodynamic formulation of supercontinuum generation in photonic crystal fibers. In the highly nonlinear regime of supercontinuum generation, the optical field exhibits a turbulent dynamics that may be described by the kinetic wave theory. In this respect, the phenomenon of spectral broadening inherent to supercontinuum generation may be interpreted as a natural process of thermalization, which is characterized by an irreversible evolution of the optical field toward a thermodynamic equilibrium state. The numeric…

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Thermodynamic equilibriumWave turbulenceWave packetPhysics::OpticsOptical field01 natural sciencesAtomic and Molecular Physics and Optics010305 fluids & plasmasSupercontinuumCross-polarized wave generationQuantum mechanicsQuantum electrodynamics0103 physical sciencesDispersion (optics)Group velocity010306 general physics
researchProduct

Toward a thermodynamic description of supercontinuum generation

2008

International audience; We consider the incoherent nonlinear regime of the supercontinuum generation process in optical fibers. We show that, under certain conditions, the phenomenon of spectral broadening inherent to the supercontinuum generation may be described by simple thermodynamic arguments based on the kinetic wave theory. Accordingly, the supercontinuum generation process may be regarded as a thermalization process, which is characterized by an irreversible evolution of the optical field toward a thermodynamic equilibrium state, i.e., the state of maximum nonequilibrium entropy.

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Thermodynamic equilibriumbusiness.industryPhysics::OpticsNon-equilibrium thermodynamicsNonlinear opticsOptical field01 natural sciencesAtomic and Molecular Physics and OpticsSupercontinuum010309 opticsFour-wave mixingThermalisationOptics0103 physical sciences010306 general physicsbusinessDoppler broadeningOptics Letters
researchProduct

Non-equilibrium temperature of well-developed quantum turbulence

2009

Abstract A non-equilibrium effective temperature of quantum vortex tangles is defined as the average energy of closed vortex loops. The resulting thermodynamic expressions for the entropy and the energy in terms of the temperature of the tangle are confirmed by a microscopic analysis based on a potential distribution function for the length of vortex loops. Furthermore, these expressions for the entropy and energy in terms of temperature are analogous to those of black holes: this may be of interest for establishing further connections between topological defects in superfluids and cosmology.

Physicsfractal dimensionnon equilibrium thermodynamicThermodynamic equilibriumQuantum vortexQuantum turbulenceGeneral Physics and AstronomyNon-equilibrium thermodynamicssuperfluid turbulenceVortexTopological defectSuperfluidityDistribution functionClassical mechanicsQuantum mechanicsSettore MAT/07 - Fisica Matematicavortice
researchProduct

Anomalous thermalization of nonlinear opticalwave systems

2011

In complete analogy with a system of classical particules colliding inside a gas medium, an incoherent optical field can evolve, owing to nonlinearity, towards a thermodynamic equilibrium state [1]. In this respect, the spatiotemporal dynamics of the light field is governed by the nonlinear Schrodinger equation and its equilibrium spectrum has been determined in the framework of the weak turbulence theory [1,2]. It is expected that experiments made in the field of nonlinear optics can possibly lead to the observation of turbulence or thermalization of nonlinear waves [1,2]. Here we present experimental, theoretical and numerical studies of different optical systems presenting an unusual the…

Physicssymbols.namesakeNonlinear systemClassical mechanicsField (physics)Thermodynamic equilibriumsymbolsNonlinear opticsOptical fieldNonlinear Schrödinger equationLight fieldSchrödinger equation
researchProduct

Rate of Mixing for Equilibrium States in Negative Curvature and Trees

2021

In this survey based on the recent book by the three authors, we recall the Patterson-Sullivan construction of equilibrium states for the geodesic flow on negatively curved orbifolds or tree quotients, and discuss their mixing properties, emphasizing the rate of mixing for (not necessarily compact) tree quotients via coding by countable (not necessarily finite) topological shifts. We give a new construction of numerous nonuniform tree lattices such that the (discrete time) geodesic flow on the tree quotient is exponentially mixing with respect to the maximal entropy measure: we construct examples whose tree quotients have an arbitrary space of ends or an arbitrary (at most exponential) grow…

Pure mathematicssymbols.namesakeExponential growthDiscrete time and continuous timeThermodynamic equilibriumsymbolsCountable setNegative curvatureGibbs measureQuotientMathematicsExponential function
researchProduct

Theory of the growth mode for a thin metallic film on an insulating substrate

2002

We have developed a novel theory predicting the growth mode of a thin metallic film on an insulating substrate. This combines ab initio electronic structure calculations for several ordered metal/insulator interfaces (varying both coverage and substrate lattice constant), with a thermodynamic approach based on microscopic calculations. We illustrate this approach for Ag film deposited on MgO(0 0 1) substrate. Ab initio calculations predict high mobility of adsorbed silver atoms on the perfect magnesia surface even at low temperatures. Our theoretical analysis clearly demonstrates that the growth of metallic islands is predominant at the initial stage of silver deposition, which agrees with …

SilverCondensed matter physicsChemistryThermodynamic equilibriumAb initio quantum chemical methods and calculationsAb initioEquilibrium thermodynamics and statistical mechanicsCrystal growthSurfaces and InterfacesElectronic structureGrowthCondensed Matter PhysicsSurfaces Coatings and FilmsMetalCondensed Matter::Materials ScienceLattice constantTransition metalAb initio quantum chemistry methodsCoatingsvisual_artMaterials Chemistryvisual_art.visual_art_mediumPhysics::Atomic and Molecular ClustersPhysical chemistryMagnesium oxidesSurface Science
researchProduct

Equilibrium between Hydroxycycloalkanones and Oxabicycloalkanols

2009

Guido Kramer, Annette Oehlhof, and Herbert Meier Institute of Organic Chemistry, University of Mainz, Duesbergweg 10 – 14, 55099 Mainz, Germany Reprint requests to Prof. Dr. H. Meier. Fax: +49-(0)6131-3925396. E-mail: hmeier@mail.uni-mainz.de Z. Naturforsch. 2009, 64b, 847 – 850; received April 8, 2009 Hydroxycycloalkanones 1 of medium ring size (8 – 10) exist in a transannular tautomeric equilibrium with the corresponding oxabicycloalkan-1-ols 2, which represent hemiacetals. Normally, the bicyclic structures 2 predominate in solution although their portion decreases with increasing solvent polarity. A correlation of the Gibbs reaction enthalpies ∆G (1→2) with the solvent parameters ET (30)…

SolventBicyclic moleculeEquilibrium thermodynamicsChemistryThermodynamic equilibriumPartition equilibriumThermodynamicsGeneral ChemistryTautomerDynamic equilibriumLaw of mass actionZeitschrift für Naturforschung B
researchProduct

The reaction enthalpy of hydrogen dissociation calculated with the Small System Method from simulation of molecular fluctuations.

2014

We show how we can find the enthalpy of a chemical reaction under non-ideal conditions using the Small System Method to sample molecular dynamics simulation data for fluctuating variables. This method, created with Hill's thermodynamic analysis, is used to find properties in the thermodynamic limit, such as thermodynamic correction factors, partial enthalpies, volumes, heat capacities and compressibility. The values in the thermodynamic limit at (T,V, μj) are then easily transformed into other ensembles, (T,V,Nj) and (T,P,Nj), where the last ensemble gives the partial molar properties which are of interest to chemists. The dissociation of hydrogen from molecules to atoms was used as a conve…

Standard enthalpy of reactionChemistryThermodynamic equilibriumEnthalpyGeneral Physics and AstronomyThermodynamicsPartial molar propertyThermodynamic databases for pure substancessymbols.namesakeThermodynamic limitsymbolsPhysical and Theoretical ChemistryEquilibrium constantVan 't Hoff equationPhysical chemistry chemical physics : PCCP
researchProduct