Search results for "Thermoelectric effect"

showing 10 items of 147 documents

Investigation of the Thermoelectric Properties of the Series TiCo1-xNixSnxSb1-x

2010

The effect of the simultaneous substitution of cobalt by nickel and antimony by tin in the solid solution TiCo1–xNixSnxSb1–x was systematically investigated. The number of valence electrons does not change by this substitution and therefore the resistivity stays semimetallic or semiconducting. The series were synthesized by arcmelting and the thermoelectric properties were determined. It was found out that the substitution of cobalt and antimony by nickel and tin reduces the thermal conductivity to 2 W·m–1·K–1 at 400 K. The reduction is caused by titanium rich prolate micro structures that were found by energy dispersive X-ray spectroscopy investigations. The Seebeck coefficient and the res…

Inorganic ChemistryNickelchemistryAntimonyElectrical resistivity and conductivitySeebeck coefficientThermoelectric effectMetallurgyAnalytical chemistrychemistry.chemical_elementTinCobaltSolid solutionZeitschrift für anorganische und allgemeine Chemie
researchProduct

Very large thermophase in ferromagnetic josephson junctions

2014

Under the terms of the Creative Commons Attribution License 3.0 (CC-BY).

Josephson effectJosephson-JunctionsGeneral Physics and AstronomyFOS: Physical sciences02 engineering and technology7. Clean energy01 natural sciencesElectromagnetic radiationSuperconductivity (cond-mat.supr-con)superconductorTunnel junctionsCondensed Matter::SuperconductivityJosephson junction0103 physical sciencesThermoelectric effectMesoscale and Nanoscale Physics (cond-mat.mes-hall)thermoelectric response010306 general physicsSuperconductivityPhysicsCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale Physicsta114Condensed Matter - SuperconductivitySupercurrent021001 nanoscience & nanotechnologyFerromagnetism8. Economic growthQuasiparticle0210 nano-technologyVoltage drop
researchProduct

Length Scale of the Spin Seebeck Effect

2015

We investigate the origin of the spin Seebeck effect in yttrium iron garnet (YIG) samples for film thicknesses from 20 nm to 50  μm at room temperature and 50 K. Our results reveal a characteristic increase of the longitudinal spin Seebeck effect amplitude with the thickness of the insulating ferrimagnetic YIG, which levels off at a critical thickness that increases with decreasing temperature. The observed behavior cannot be explained as an interface effect or by variations of the material parameters. Comparison to numerical simulations of thermal magnonic spin currents yields qualitative agreement for the thickness dependence resulting from the finite magnon propagation length. This allow…

Length scaleMaterials scienceCondensed matter physicsSpin polarizationMagnonYttrium iron garnetGeneral Physics and Astronomypacs:72.25.-bCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistrypacs:72.20.Papacs:75.40.GbSpin waveFerrimagnetismThermoelectric effectddc:530Condensed Matter::Strongly Correlated Electronspacs:75.30.DsSpin-½Physical Review Letters
researchProduct

Thermoelectric effects on electrically conducting particles in liquid metal

2015

International audience; The present paper deals with the thermoelectric effect on a solid electrically conducting particle immersed in a liquid metal under a temperature gradient. Superimposition of a static magnetic field induces thermoelectric magnetic (TEM) forces both in the solid and in the liquid. Considering a simple spherical particle, the electric current density and the corresponding forces can be calculated analytically. Two cases are considered according to the orientation of the magnetic field with respect to the temperature gradient. The corresponding flow fields around the particle are calculated in both cases. Grain motion is analyzed in the light of in-situ experiments perf…

Liquid metalMaterials scienceCondensed matter physicsFlow (psychology)0211 other engineering and technologiesGeneral Physics and Astronomy[CHIM.MATE]Chemical Sciences/Material chemistry02 engineering and technology021001 nanoscience & nanotechnologyMagnetostaticsMagnetic fieldTemperature gradientThermoelectric effectParticleElectrical and Electronic EngineeringElectric current0210 nano-technology021102 mining & metallurgyMagnetohydrodynamics
researchProduct

Co-doping with boron and nitrogen impurities in T-carbon

2020

Previously, Ren et al. [Chem. Phys. 518, 69–73, 2019] reported the failure of Boron-Nitrogen (B-N) co-doping as inter B-N bond in T-carbon. In present work, a B-N atom pair is introduced in T-carbon as p-n co-dopant to substitute two carbon atoms in the same carbon tetrahedron and form an intra B-N bond. The stability of this doping system is verified from energy, lattice dynamic, and thermodynamic aspects. According to our B3PW calculations, B-N impurities in this situation can reduce the band gap of T-carbon from 2.95 eV to 2.55 eV, making this material to be a promising photocatalyst. Through the study of its transport properties, we can also conclude that B-N co-doping cannot improve th…

Materials science010405 organic chemistryBand gapDopingT-carbonchemistry.chemical_elementGeneral Chemistry010402 general chemistryDFT01 natural sciencesNitrogen0104 chemical scienceslcsh:Chemistrylcsh:QD1-999chemistryImpurityLattice (order)AtomThermoelectric effect:NATURAL SCIENCES:Physics [Research Subject Categories]DopingPhysical chemistryBN pairBoronJournal of Saudi Chemical Society
researchProduct

On the Phase Separation in n-Type Thermoelectric Half-Heusler Materials

2018

Half-Heusler compounds have been in focus as potential materials for thermoelectric energy conversion in the mid-temperature range, e.g., as in automotive or industrial waste heat recovery, for more than ten years now. Because of their mechanical and thermal stability, these compounds are advantageous for common thermoelectric materials such as Bi 2 Te 3 , SiGe, clathrates or filled skutterudites. A further advantage lies in the tunability of Heusler compounds, allowing one to avoid expensive and toxic elements. Half-Heusler compounds usually exhibit a high electrical conductivity σ , resulting in high power factors. The main drawback of half-Heusler compounds is their high lattice th…

Materials science02 engineering and technology010402 general chemistryThermoelectric energy conversion01 natural scienceslcsh:TechnologyIndustrial wasteElectrical resistivity and conductivityHeat recovery ventilationThermoelectric effectGeneral Materials ScienceThermal stabilitylcsh:Microscopylcsh:QC120-168.85lcsh:QH201-278.5lcsh:T021001 nanoscience & nanotechnologyThermoelectric materialsEngineering physics0104 chemical scienceslcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringphase separation0210 nano-technologylcsh:Engineering (General). Civil engineering (General)Heusler compounds; phase separation; thermoelectricsHeusler compoundsthermoelectricslcsh:TK1-9971Solid solutionMaterials; Volume 11; Issue 4; Pages: 649
researchProduct

Towards higher zT in early transition metal oxides: optimizing the charge carrier concentration of the WO3-x compounds

2018

Abstract Thermoelectric devices are believed to play an important role in the energy research for the next decades. Thanks to their low costs coupled with high stability and sustainability, metal oxides are very promising materials even if their efficiencies still need improvements to ensure a wide applicability. Slightly reduced early transition metal oxides show intrinsic defects in the crystal structure which guarantee very low values of the thermal conductivity. The challenge to fulfil the “phonon-glass electron-crystal” concept is to decouple the optimization of the electronic properties from the thermal transport properties. In this contribution we report the optimization of the charg…

Materials science02 engineering and technologyCrystal structure010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesEngineering physics0104 chemical sciencesMetalThermal conductivityTransition metalvisual_artPhase (matter)Thermoelectric effectvisual_art.visual_art_mediumFigure of meritCharge carrier0210 nano-technologyMaterials Today: Proceedings
researchProduct

Giant Spin Seebeck Effect through an Interface Organic Semiconductor

2019

Interfacing an organic semiconductor C60 with a non-magnetic metallic thin film (Cu or Pt) has created a novel heterostructure that is ferromagnetic at ambient temperature, while its interface with a magnetic metal (Fe or Co) can tune the anisotropic magnetic surface property of the material. Here, we demonstrate that sandwiching C60 in between a magnetic insulator (Y3Fe5O12: YIG) and a non-magnetic, strong spin-orbit metal (Pt) promotes highly efficient spin current transport via the thermally driven spin Seebeck effect (SSE). Experiments and first principles calculations consistently show that the presence of C60 reduces significantly the conductivity mismatch between YIG and Pt and the s…

Materials science530 PhysicsFOS: Physical sciences02 engineering and technologyApplied Physics (physics.app-ph)01 natural sciencesCondensed Matter::Materials Science0103 physical sciencesThermoelectric effectPhysics::Atomic and Molecular ClustersGeneral Materials ScienceElectrical and Electronic EngineeringThin film010306 general physicsAnisotropyCondensed matter physicsProcess Chemistry and TechnologyHeterojunctionPhysics - Applied Physics530 Physik021001 nanoscience & nanotechnologyOrganic semiconductorMagnetic anisotropyFerromagnetismMechanics of MaterialsSpin diffusion0210 nano-technology
researchProduct

Influence of Nb-doping on the local structure and thermoelectric properties of transparent TiO2:Nb thin films

2020

The experiment at HASYLAB/DESY was performed within the project I-20180036 EC. The research leading to this result has been supported by the project CALIPSOplus under the Grant Agreement 730872 from the EU Framework Programme for Research and Innovation HORIZON 2020. Filipe Correia is grateful to the Fundação para a Ciência e Tecnologia (FCT, Portugal) for the Ph.D. Grant SFRH/BD/111720/2015 . Joana Ribeiro is grateful to the Project WinPSC - POCI-01-0247-FEDER-017796, for the research grant, co-funded by the European Regional Development Fund (ERDF) , through the Operational Programme for Competitiveness and Internationalisation (COMPETE 2020), under the PORTUGAL 2020 Partnership Agreement…

Materials scienceAbsorption spectroscopyCiências Naturais::Ciências FísicasThin films:Ciências Físicas [Ciências Naturais]Analytical chemistry02 engineering and technologyNb [TiO2]010402 general chemistry01 natural sciencesSputteringSeebeck coefficientThermoelectric effect:NATURAL SCIENCES:Physics [Research Subject Categories]Materials ChemistryThin filmNb 2 [TiO]Science & TechnologyDopantExtended X-ray absorption fine structureThermoelectricMechanical EngineeringMetals and AlloysSputtering540021001 nanoscience & nanotechnologyXANESXANES0104 chemical sciencesTiO :Nb 2EXAFSMechanics of Materialsddc:540TiO2:NbSeebeck0210 nano-technologyJournal of Alloys and Compounds
researchProduct

The local atomic structure and thermoelectric properties of Ir-doped ZnO: hybrid DFT calculations and XAS experiments

2021

We greatly acknowledge the financial support via the ERAF Project No. 1.1.1.1/18/A/073. Calculations have been performed under the Project HPC-EUROPA3 (INFRAIA-2016-1-730897), with the support of the EC Research Innovation Action under the H2020 Programme. A. C. gratefully acknowledges the technical support received from KTH-PDC. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2

Materials scienceAbsorption spectroscopyExtended X-ray absorption fine structureFermi levelAnalytical chemistrychemistry.chemical_element02 engineering and technologyGeneral ChemistryElectronic structure010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciences0104 chemical sciencessymbols.namesakechemistrySeebeck coefficientThermoelectric effect:NATURAL SCIENCES:Physics [Research Subject Categories]Materials ChemistrysymbolsDensity functional theoryIridium0210 nano-technologyJournal of Materials Chemistry C
researchProduct