Search results for "Thioamide"
showing 10 items of 10 documents
Impact of O → S Exchange in Ferrocenyl Amides on the Structure and Redox Chemistry
2014
The conformations and redox chemistry of ferrocenyl amides have been investigated in considerable depth in the last few years, while ferrocenyl thioamides have attracted less interest so far, although distinctly different conformations and reactivity patterns are expected. Monoferrocenyl amides Fc-NHC(O)CH3 (1) and 1,1′-CH3O(O)C-Fn-NHC(O)CH3 (2) and diferrocenyl amides Fc-NHC(O)-Fc (5) and Fc-NHC(O)-Fn-NHC(O)CH3 (6) are easily transformed into the corresponding thioamides (3, 4, 7, 8) by treatment with Lawesson’s reagent (2,4-bis(p-methoxyphenyl)-1,3-dithiaphosphetane-2,4-disulfide) (Fc = Fe(C5H4)(C5H5), Fn = Fe(C5H4)2). The thioamide conformations (cis/trans) in 3, 4, 7, and 8 and the hydr…
Partial thioamide scan on the lipopeptaibiotic trichogin GA IV. Effects on folding and bioactivity
2012
Backbone modification is a common chemical tool to control the conformation of linear peptides and to explore potentially useful effects on their biochemical and biophysical properties. The thioamide, ψ[CS-NH], group is a nearly isosteric structural mimic of the amide (peptide) functionality. In this paper, we describe the solution synthesis, chemical characterization, preferred conformation, and membrane and biological activities of three, carefully selected, peptide analogues of the lipopeptaibiotic [Leu11-OMe] trichogin GA IV. In each analogue, a single thioamide replacement was incorporated. Sequence positions near the N-terminus, at the center, and near the C-terminus were investigated…
Generation and Oligomerization of N-Ferrocenyl Ketenimines via Open-Shell Intermediates
2016
In the presence of oxidant (Ag[SbF6]) and base, N-ferrocenyl thioamide Fc-NHC(S)CH3 (H-1; Fc = Fe(η5-C5H5)(η5-C5H4)) converts in an unexpected multistep reaction sequence to a novel N,S-heterocyclic ring, which initiates an oligomerization reaction. Key intermediates toward the resulting complicated material are Ag6(1)6 silver clusters of the anionic N,S-chelating ligand 1− and EPR-active piano stool complexes resulting from ring-slipped cyclopentadienyl ligands, as well as electrophilic N-ferrocenyl ketenimine Fc-N═C═CH2 (2) and its ferrocenium cation 2•+ formed by hydrosulfide elimination. Mechanistic insight is achieved using X-ray diffraction and mass spectrometry, as well as EPR and NM…
Co-crystals of an agrochemical active – A pyridine-amine synthon for a thioamide group
2011
Five novel co-crystals of thiophanate-ethyl (TE), an agrochemical active, with di(2-pyridyl)ketone (1), 2-benzoylpyridine (2), 3-benzoylpyridine (3), 4-phenylpyridine (4) and biphenyl (5) were found and crystal structures of four of them (TE1–TE3, TE5) solved by single crystal X-ray diffraction. Three of the co-crystals (TE1–TE3) form by way of a reliable pyridine-amine hydrogen bond synthon and one (TE5) because of close packing effects. The fifth co-crystal was identified by X-ray powder diffraction. The work demonstrates the usage of a reliable supramolecular synthon for crystal engineering, while concurrently reminds that the close packing of even very similar molecules cannot be fully …
H2-Antihistaminika, 33. Mitt. Synthese und H2-antagonistische Aktivität heteroaromatischer (Thio)Carboxamide und Triazol(thi)on-Derivate des Piperidi…
1987
Die Zyklisierung der (Thio)Semicarbazide la, b mit N-Cyan-diphenylimidocarbonat, N-Cyan-dimethyldithioimidocarbonat, Aminocrotonsaurenitril und Acetessigester gibt die heteroaromatischen (Thio)Carboxamide 5a, b und 7–9. Beim Einwirken von NaOH auf die (Thio)Biharnstoffe 12 und 13 sowie die (Oxa)Thiadiazoldiamine 19 und 20 werden die Triazol(thi)one 15 und 17 erhalten. Am Vorhof des Meerschweinchens zeigen 5a, 7 und 8 eine mit Cimetidin vergleichbare Histamin-H2-antagonistische Wirkung. H2-Antihistaminics, XXXIII: Synthesis and H2-Antagonistic Activity of Heteroaromatic (Thio)Carboxamides and Triazole(thi)one-Derivatives of Piperidinomethylphenoxypropylamine The (thio)semicarbazides la, b ar…
CCDC 1475563: Experimental Crystal Structure Determination
2016
Related Article: Torben Kienz, Christoph Förster, and Katja Heinze|2016|Organometallics|35|3681|doi:10.1021/acs.organomet.6b00619
CCDC 1973095: Experimental Crystal Structure Determination
2019
Related Article: F.C. Pires, L. Bresolin, V.C. Gervini, B. Tirloni, A. Bof de Oliveira|2020|Acta Crystallogr.,Sect.E:Cryst.Commun.|76|115|doi:10.1107/S2056989019016980
CCDC 1057510: Experimental Crystal Structure Determination
2015
Related Article: Ian S. Morgan, Akseli Mansikkamäki, Georgia A. Zissimou, Panayiotis A. Koutentis, Mathieu Rouzières, Rodolphe Clérac and Heikki M. Tuononen|2015|Chem.-Eur.J.|21|15843|doi:10.1002/chem.201501343
CCDC 930874: Experimental Crystal Structure Determination
2013
Related Article: Rubén Gil-García, Roberto Fraile, Bruno Donnadieu, Gotzon Madariaga, Vaidas Januskaitis, Jordi Rovira, Lucía González, Joaquín Borrás, Francisco Javier Arnáiz, Javier García-Tojal|2013|New J.Chem.|37|3568|doi:10.1039/C3NJ00321C
CCDC 930875: Experimental Crystal Structure Determination
2013
Related Article: Rubén Gil-García, Roberto Fraile, Bruno Donnadieu, Gotzon Madariaga, Vaidas Januskaitis, Jordi Rovira, Lucía González, Joaquín Borrás, Francisco Javier Arnáiz, Javier García-Tojal|2013|New J.Chem.|37|3568|doi:10.1039/C3NJ00321C