Search results for "Time-resolved"
showing 10 items of 70 documents
From radop to laser spectroscopy and back
1985
The paper reviews some techniques in optical spectroscopy of short-lived nuclei, their results regarding nuclear moments and isotopic shift, and their relation to the work of Professor K. Sugimoto.
The Monod-Wyman-Changeux allosteric model accounts for the quaternary transition dynamics in wild type and a recombinant mutant human hemoglobin
2012
International audience; The acknowledged success of the Monod-Wyman-Changeux (MWC) allosteric model stems from its efficacy in accounting for the functional behavior of many complex proteins starting with hemoglobin (the paradigmatic case) and extending to channels and receptors. The kinetic aspects of the allosteric model, however, have been often neglected, with the exception of hemoglobin and a few other proteins where conformational relaxations can be triggered by a short and intense laser pulse, and monitored by time-resolved optical spectroscopy. Only recently the application of time-resolved wide-angle X-ray scattering (TR-WAXS), a direct structurally sensitive technique, unveiled th…
Up-conversion processes in NaLaF4:Er3+
2009
abstract Structural and spectroscopic investigation of NaLaF 4 :Er 3+ material at different doping concentrations ispresented. X-ray diffraction patterns, up-conversion luminescence spectra and decay curves for 2 H 9/2 ? 4 I 15/2 , 4 S 3/2 ? 4 I 15/2 and 4 F 9/2 ? 4 I 15/2 optical transitions in the material are shown and possibleexcitation routes are discussed. Raman spectrum for the undoped material is presented and the effectivephonon energy of the material is estimated. Based on the obtained results application of rare-earth dopedNaLaF 4 in the field of up-conversion phosphors is evaluated. 2009 Elsevier B.V. All rights reserved. 1. IntroductionFor many years rare-earth (RE) doped materi…
Polyamine Linear Chains Bearing Two Identical Terminal Aromatic Units. Evidence for a Photo Induced Bending Movement
2001
Abstract Several chemosensors bearing a fluorescent unit at both ends of a linear polyamine chain were synthesised. The protonation as well as the association constants with Cu2+ and Zn2+ were determined by potentiometry in 0.15 mol dm−3 NaCl at 298.1 K. In the case of 1,16-bis(1-naphthylmethyl)-1,4,7,10,13,16-hexaazadecane hexahydrochloride (L1), formation of an excimer emission in aqueous acidic solutions was observed. The system was characterized by steady state fluorescence emission and by time resolved fluorescence. In the ground state the molecule is expected to adopt a more or less linear conformation, while in the excited state a bending movement of the chain must occur in order to …
Luminescent silicon nanocrystals produced by near-infrared nanosecond pulsed laser ablation in water
2014
Abstract We report the investigation of luminescent nanoparticles produced by ns pulsed Nd:YAG laser ablation of silicon in water. Combined characterization by AFM and IR techniques proves that these nanoparticles have a mean size of ∼3 nm and a core–shell structure consisting of a Si-nanocrystal surrounded by an oxide layer. Time resolved luminescence spectra evidence visible and UV emissions; a band around 1.9 eV originates from Si-nanocrystals, while two bands centered at 2.7 eV and 4.4 eV are associated with oxygen deficient centers in the SiO 2 shell.
Quantum control of ground-state rotational coherence in a linear molecule
2000
We present an experimental and theoretical investigation of the quantum control of ground-state rotational coherence in a linear molecule. A sequence of two temporally separated laser pulses creates a rotational superposition state in ${\mathrm{CO}}_{2}$ whose evolution is monitored through a polarization technique. We study the influence of the phase difference between the two pulses. We show that the overlapping of the two wave packets, produced by each pulse, gives rise to quantum interference that affects the orientational anisotropy of the sample. Because of the large number of coherently excited levels, the interference produces well-separated temporal structures, whose magnitude can …
Study of the defects in La3Ta0.5Ga5.5O14 single crystals
2016
Abstract Defects that are formed during crystal growth pose a serious obstacle for potential application of La 3 Ga 5.5 Ta 0.5 O 14 (LGT) as a laser or piezoelectric crystal. We have performed the study of the defects origin in LGT crystals grown in different atmospheres using optical, EPR and time-resolved luminescence characterization methods. The absorption bands detected in the transparency region at 290, 360 and 490 nm ( T =300 K) demonstrate different dependence on crystal annealing in vacuum and air. EPR analysis demonstrated that the defects responsible for these bands are non-paramagnetic. X-ray irradiation results in hole trapping by oxygen ions thus forming O − centers perturbed …
Ultrafast excitation dynamics of low energy pigments in reconstituted peripheral light-harvesting complexes of photosystem I
2000
AbstractUltrafast dynamics of a reconstituted Lhca4 subunit from the peripheral LHCI-730 antenna of photosystem I of higher plants were probed by femtosecond absorption spectroscopy at 77 K. Intramonomeric energy transfer from chlorophyll (Chl) b to Chl a and energy equilibration between Chl a molecules observed on the subpicosecond time scale are largely similar to subpicosecond energy equilibration processes within LHCII monomers. However, a 5 ps equilibration process in Lhca4 involves unique low energy Chls in LHCI absorbing at 705 nm. These pigments localize the excitation both in the Lhca4 subunit and in LHCI-730 heterodimers. An additional 30–50 ps equilibration process involving red …
Laser-induced time-resolved luminescence in analysis of rare earth elements in apatite and calcite
2021
Laser-induced time-resolved luminescence was used to study rare earth element (REE) containing natural apatite and calcite minerals. The luminescence from 400 nm to 700 nm in the minerals was analyzed with excitation ranges 210–340 nm and 405–535 nm. As an outcome, several useful excitation wavelengths to detect one or more REE from apatite and calcite are reported. The feasibility of selected excitations in e.g. avoiding the disturbance of intense Mn2+ luminescence band, results was demonstrated with a non-gated detector. peerReviewed
Oxidation of silicon nanoparticles produced by ns laser ablation in liquids
2014
The investigation of nanoparticles produced by ns pulsed Nd:YAG laser ablation of silicon in liquids is reported. Combined characterization by morphological and structural techniques shows that these nanoparticles have a mean diameter of ~3 nm and a core-shell structure consisting of a Si-nanocrystal surrounded by a layer of oxidized Si. Time resolved luminescence spectra evidence visible and UV emissions: a broad band around 1.9 eV originates from Si-nanocrystals, while two bands centered at 2.7 eV and 4.4 eV are associated with oxygen deficient centers in the SiO2 shell.