Search results for "Tissue Scaffold"

showing 10 items of 140 documents

Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering

2020

The tissue engineering of hard organs and tissues containing cartilage, teeth, and bones is a widely used and rapidly progressing field. One of the main features of hard organs and tissues is the mineralization of their extracellular matrices (ECM) to enable them to withstand pressure and weight. Recently, a variety of printing strategies have been developed to facilitate hard organ and tissue regeneration. Fundamentals in three-dimensional (3D) printing techniques are rapid prototyping, additive manufacturing, and layered built-up and solid-free construction. This strategy promises to replicate the multifaceted architecture of natural tissues. Nowadays, 3D bioprinting techniques have prove…

Rapid prototyping0303 health sciences3D bioprintingScaffoldTissue EngineeringTissue ScaffoldsComputer scienceCartilageBioprintingPharmaceutical ScienceNanotechnology02 engineering and technology021001 nanoscience & nanotechnologyHard tissuelaw.invention03 medical and health sciencesmedicine.anatomical_structureTissue engineeringlawPrinting Three-DimensionalmedicineNanotechnology0210 nano-technology030304 developmental biologyJournal of Controlled Release
researchProduct

Biologic response of inguinal hernia prosthetics: a comparative study of conventional static meshes versus 3D dynamic implants.

2015

Despite improvements in prosthetics and surgical techniques, the rate of complications following inguinal hernia repair remains high. Among these, discomfort and chronic pain have become a source of increasing concern among surgeons. Poor quality of tissue ingrowth, such as thin scar plates or shrinking scars-typical results with conventional static implants and plugs-may contribute to these adverse events. Recently, a new type of 3D dynamically responsive implant was introduced to the market. This device, designed to be placed fixation-free, seems to induce ingrowth of viable and structured tissue instead of regressive fibrotic scarring. To elucidate the differences in biologic response be…

Sampling StudieTime FactorsTime FactorProstheses and ImplantBiomedical EngineeringMedicine (miscellaneous)BioengineeringBiocompatible MaterialsHernia InguinalPolypropylenesProsthesis DesignSampling StudiesStatistics NonparametricImaging Three-DimensionalProstheseTensile StrengthMaterials TestingHumansHerniorrhaphyBiocompatible MaterialMedicine (all)Inguinal herniaImplantTissue scaffoldProstheses and ImplantsSurgical MeshBiomaterialImmunohistochemistryProsthesis FailureSettore MED/18 - Chirurgia GeneraleTissue regenerationBiomaterials; Herniorrhaphy; Implants; Inguinal hernia; Prostheses; Tissue regeneration; Tissue scaffolds; Biocompatible Materials; Hernia Inguinal; Herniorrhaphy; Humans; Imaging Three-Dimensional; Immunohistochemistry; Materials Testing; Polypropylenes; Prosthesis Design; Prosthesis Failure; Sampling Studies; Statistics Nonparametric; Tensile Strength; Time Factors; Prostheses and Implants; Surgical Mesh; Biomaterials; Biomedical Engineering; Bioengineering; Medicine (miscellaneous); Medicine (all)PolypropyleneHumanArtificial organs
researchProduct

Silk fibroin scaffolds enhance cell commitment of adult rat cardiac progenitor cells.

2015

The use of three-dimensional (3D) cultures may induce cardiac progenitor cells to synthesize their own extracellular matrix (ECM) and sarcomeric proteins to initiate cardiac differentiation. 3D cultures grown on synthetic scaffolds may favour the implantation and survival of stem cells for cell therapy when pharmacological therapies are not efficient in curing cardiovascular diseases and when organ transplantation remains the only treatment able to rescue the patient’s life. Silk fibroin-based scaffolds may be used to increase cell affinity to biomaterials and may be chemically modified to improve cell adhesion. In the present study, porous, partially orientated and electrospun nanometric n…

Sarcomeresprogenitor cellCell SurvivalCell Culture TechniquesBiocompatible MaterialsReal-Time Polymerase Chain ReactionZ-bodieMicroscopy Electron TransmissionCell AdhesionElectrochemistryAnimalsConnectinnatural polymermyocardial tissue; progenitor cells; Z-bodies; tissue engineering; natural polymers; silk fibroinTissue EngineeringTissue ScaffoldsMyocardiumStem CellsWaterCell Differentiationmyocardial tissueBombyxFlow CytometryExtracellular MatrixRatssilk fibroinMicroscopy Electron ScanningCollagenFibroinsPorosityJournal of tissue engineering and regenerative medicine
researchProduct

Channeled scaffolds implanted in adult rat brain.

2012

Scaffolds with aligned channels based on acrylate copolymers, which had previously demonstrated good com- patibility with neural progenitor cells were studied as coloniz- able structures both in vitro with neural progenitor cells and in vivo, implanted without cells in two different locations, in the cortical plate of adult rat brains and close to the subven- tricular zone. In vitro, neuroprogenitors colonize the scaffold and differentiate into neurons and glia within its channels. When implanted in vivo immunohistochemical analysis by confocal microscopy for neural and endothelial cells markers demonstrated that the scaffolds maintained continuity with the surrounding neural tissue and wer…

ScaffoldAgingMaterials scienceAngiogenesisbrainBiomedical EngineeringSubventricular zoneNeovascularization PhysiologicScaffold SeedingNeural tissue engineeringGlial scarScaffoldBiomaterialsangiogenesisbiocompatibilityImplants ExperimentalNeural Stem CellsIn vivomedicineAnimalsRats WistarCerebral CortexNeuronsTissue ScaffoldsMetals and AlloysBrainCell DifferentiationNeural stem cellRatsAdult Stem Cellsmedicine.anatomical_structureMicroscopy FluorescenceMAQUINAS Y MOTORES TERMICOSCeramics and CompositesMicroscopy Electron ScanningFemaleneural regenerationNeurogliaBiomedical engineeringStem Cell TransplantationJournal of biomedical materials research. Part A
researchProduct

Biosilica-loaded poly(ϵ-caprolactone) nanofibers mats provide a morphogenetically active surface scaffold for the growth and mineralization of the os…

2014

Bioprinting/3D cell printing procedures for the preparation of scaffolds/implants have the potential to revolutionize regenerative medicine. Besides biocompatibility and biodegradability, the hardness of the scaffold material is of critical importance to allow sufficient mechanical protection and, to the same extent, allow migration, cell–cell, and cell–substrate contact formation of the matrix-embedded cells. In the present study, we present a strategy to encase a bioprinted, cell-containing, and soft scaffold with an electrospun mat. The electrospun poly(e-caprolactone) (PCL) nanofibers mats, containing tetraethyl orthosilicate (TEOS), were subsequently incubated with silicatein. Silicate…

ScaffoldBiocompatibilityPolyestersNanofibersOsteoclastsNanotechnologyBiocompatible MaterialsApplied Microbiology and BiotechnologyMineralization (biology)chemistry.chemical_compoundCalcification PhysiologicOsteoclastCell Line TumormedicineHumansNanotechnologySaos-2 cellsCell ProliferationTissue ScaffoldsChemistrytechnology industry and agricultureGeneral MedicineSilicon DioxideElectrospinning3. Good healthTetraethyl orthosilicatemedicine.anatomical_structureChemical engineeringNanofiberMolecular MedicineBiotechnologyBiotechnology journal
researchProduct

The use of hydrogels in bone-tissue engineering

2010

Many different types of scaffold materials have been used for tissue engineering applications, and hydrogels form one group of materials that have been used in a wide variety of applications. Hydrogels are hydrophilic polymer networks and they represent an important class of biomaterials in biotechnology and medicine because many hydrogels exhibit excellent biocompatibility with minimal inflammatory responses and tissue damage. Many studies have demonstrated the use of hydrogels in bone-tissue engineering applications. In this report, the summary was conducted on various kinds of polymers and different modification methods of hydrogels to enhance bone formation. The results revealed that hy…

ScaffoldBiocompatibilityTissue EngineeringTissue ScaffoldsChemistrytechnology industry and agricultureNanotechnologyHydrogelsmacromolecular substances:CIENCIAS MÉDICAS [UNESCO]complex mixturesBone tissue engineeringBone and BonesOtorhinolaryngologyTissue engineeringTissue damageSelf-healing hydrogelsUNESCO::CIENCIAS MÉDICASSurgeryBone formationBone regenerationGeneral Dentistry
researchProduct

The Deep-Sea Natural Products, Biogenic Polyphosphate (Bio-PolyP) and Biogenic Silica (Bio-Silica), as Biomimetic Scaffolds for Bone Tissue Engineeri…

2013

Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fab…

ScaffoldCell signalingOsteoclastsPharmaceutical Sciencebio-polyphosphateReview02 engineering and technologyscaffoldBone morphogenetic protein 2Bone and BonesExtracellular matrix03 medical and health sciencesOsteoprotegerinBiomimetic MaterialsPolyphosphatesBMP-2Drug DiscoveryMorphogenesisAnimalsHumansbone tissue engineeringPharmacology Toxicology and Pharmaceutics (miscellaneous)lcsh:QH301-705.5030304 developmental biologymorphogenetic scaffoldsBiological Products0303 health sciencesOsteoblastsTissue EngineeringTissue Scaffoldsbiologybio-silicaChemistryMesenchymal stem cellRANKLAnatomySilicon Dioxide021001 nanoscience & nanotechnologyCell biologylcsh:Biology (General)RANKLosteoprotegerinbiology.proteinStem cell0210 nano-technologyMarine Drugs
researchProduct

From single fiber to macro-level mechanics: A structural finite-element model for elastomeric fibrous biomaterials

2014

In the present work, we demonstrate that the mesoscopic in-plane mechanical behavior of membrane elastomeric scaffolds can be simulated by replication of actual quantified fibrous geometries. Elastomeric electrospun polyurethane (ES-PEUU) scaffolds, with and without particulate inclusions, were utilized. Simulations were developed from experimentally-derived fiber network geometries, based on a range of scaffold isotropic and anisotropic behaviors. These were chosen to evaluate the effects on macro-mechanics based on measurable geometric parameters such as fiber intersections, connectivity, orientation, and diameter. Simulations were conducted with only the fiber material model parameters a…

ScaffoldFabricationMaterials scienceFinite elements methodPolymersPolyestersmicrostructureFinite Element AnalysisPolyurethanesBiomedical EngineeringBiocompatible MaterialsMicroscopy Atomic ForceElastomercaffoldArticleBiomaterialsMaterials TestingElasticity (economics)Composite materialAnisotropyMesoscopic physicsTissue EngineeringTissue Scaffoldstissue engineering.Polyethylene TerephthalatesIsotropyMechanicsElasticityFinite element methodMechanics of MaterialselectrospunAnisotropyStress MechanicalJournal of the Mechanical Behavior of Biomedical Materials
researchProduct

Non-cross-linked porcine-based collagen I-III membranes do not require high vascularization rates for their integration within the implantation bed: …

2012

There are conflicting reports concerning the tissue reaction of small animals to porcine-based, non-cross-linked collagen I-III membranes/matrices for use in guided tissue/bone regeneration. The fast degradation of these membranes/matrices combined with transmembrane vascularization within 4 weeks has been observed in rats compared with the slow vascularization and continuous integration observed in mice. The aim of the present study was to analyze the tissue reaction to a porcine-based non-cross-linked collagen I-III membrane in mice. Using a subcutaneous implantation model, the membrane was implanted subcutaneously in mice for up to 60 days. The extent of scaffold vascularization, tissue …

ScaffoldMaterials scienceBarrier membraneSus scrofaBiomedical EngineeringFibroinNeovascularization PhysiologicBiochemistryCollagen Type IBiomaterialsProsthesis ImplantationMicemedicineAnimalsBone regenerationMolecular BiologyPolytetrafluoroethyleneMembranesTissue ScaffoldsGranulation tissueMembranes ArtificialGeneral MedicineImmunohistochemistryTransmembrane proteinRatsmedicine.anatomical_structureMembraneCollagen Type IIICross-Linking ReagentsGiant cellBiophysicsMicroscopy Electron ScanningFemaleFibroinsBiotechnologyBiomedical engineeringActa biomaterialia
researchProduct

The pre-vascularisation of a collagen-chondroitin sulphate scaffold using human amniotic fluid-derived stem cells to enhance and stabilise endothelia…

2015

Abstract A major problem in tissue engineering (TE) is graft failure in vivo due to core degradation in in vitro engineered constructs designed to regenerate thick tissues such as bone. The integration of constructs post-implantation relies on the rapid formation of functional vasculature. A recent approach to overcome core degradation focuses on the creation of cell-based, pre-engineered vasculature formed within the TE construct in vitro , prior to implantation in vivo . The primary objective of this study was to investigate whether an amniotic fluid-derived stem cell (AFSC)–human umbilical vein endothelial cell (HUVEC) co-culture could be used to engineer in vitro vasculature in a collag…

ScaffoldMaterials scienceBiomedical EngineeringNeovascularization PhysiologicBiochemistryUmbilical veinBiomaterialsTissue engineeringBlood vessel prosthesisIn vivoMaterials TestingHumansBone regenerationMolecular BiologyCells CulturedBioprosthesisTissue ScaffoldsStem CellsChondroitin SulfatesEndothelial CellsEquipment DesignGeneral MedicineAmniotic FluidBlood Vessel ProsthesisCapillariesCell biologyEquipment Failure AnalysisEndothelial stem cellCollagenStem cellStem Cell TransplantationBiotechnologyBiomedical engineeringActa Biomaterialia
researchProduct