Search results for "Tissue Scaffold"
showing 10 items of 140 documents
Nanotechnology, and scaffold implantation for the effective repair of injured organs: An overview on hard tissue engineering
2020
The tissue engineering of hard organs and tissues containing cartilage, teeth, and bones is a widely used and rapidly progressing field. One of the main features of hard organs and tissues is the mineralization of their extracellular matrices (ECM) to enable them to withstand pressure and weight. Recently, a variety of printing strategies have been developed to facilitate hard organ and tissue regeneration. Fundamentals in three-dimensional (3D) printing techniques are rapid prototyping, additive manufacturing, and layered built-up and solid-free construction. This strategy promises to replicate the multifaceted architecture of natural tissues. Nowadays, 3D bioprinting techniques have prove…
Biologic response of inguinal hernia prosthetics: a comparative study of conventional static meshes versus 3D dynamic implants.
2015
Despite improvements in prosthetics and surgical techniques, the rate of complications following inguinal hernia repair remains high. Among these, discomfort and chronic pain have become a source of increasing concern among surgeons. Poor quality of tissue ingrowth, such as thin scar plates or shrinking scars-typical results with conventional static implants and plugs-may contribute to these adverse events. Recently, a new type of 3D dynamically responsive implant was introduced to the market. This device, designed to be placed fixation-free, seems to induce ingrowth of viable and structured tissue instead of regressive fibrotic scarring. To elucidate the differences in biologic response be…
Silk fibroin scaffolds enhance cell commitment of adult rat cardiac progenitor cells.
2015
The use of three-dimensional (3D) cultures may induce cardiac progenitor cells to synthesize their own extracellular matrix (ECM) and sarcomeric proteins to initiate cardiac differentiation. 3D cultures grown on synthetic scaffolds may favour the implantation and survival of stem cells for cell therapy when pharmacological therapies are not efficient in curing cardiovascular diseases and when organ transplantation remains the only treatment able to rescue the patient’s life. Silk fibroin-based scaffolds may be used to increase cell affinity to biomaterials and may be chemically modified to improve cell adhesion. In the present study, porous, partially orientated and electrospun nanometric n…
Channeled scaffolds implanted in adult rat brain.
2012
Scaffolds with aligned channels based on acrylate copolymers, which had previously demonstrated good com- patibility with neural progenitor cells were studied as coloniz- able structures both in vitro with neural progenitor cells and in vivo, implanted without cells in two different locations, in the cortical plate of adult rat brains and close to the subven- tricular zone. In vitro, neuroprogenitors colonize the scaffold and differentiate into neurons and glia within its channels. When implanted in vivo immunohistochemical analysis by confocal microscopy for neural and endothelial cells markers demonstrated that the scaffolds maintained continuity with the surrounding neural tissue and wer…
Biosilica-loaded poly(ϵ-caprolactone) nanofibers mats provide a morphogenetically active surface scaffold for the growth and mineralization of the os…
2014
Bioprinting/3D cell printing procedures for the preparation of scaffolds/implants have the potential to revolutionize regenerative medicine. Besides biocompatibility and biodegradability, the hardness of the scaffold material is of critical importance to allow sufficient mechanical protection and, to the same extent, allow migration, cell–cell, and cell–substrate contact formation of the matrix-embedded cells. In the present study, we present a strategy to encase a bioprinted, cell-containing, and soft scaffold with an electrospun mat. The electrospun poly(e-caprolactone) (PCL) nanofibers mats, containing tetraethyl orthosilicate (TEOS), were subsequently incubated with silicatein. Silicate…
The use of hydrogels in bone-tissue engineering
2010
Many different types of scaffold materials have been used for tissue engineering applications, and hydrogels form one group of materials that have been used in a wide variety of applications. Hydrogels are hydrophilic polymer networks and they represent an important class of biomaterials in biotechnology and medicine because many hydrogels exhibit excellent biocompatibility with minimal inflammatory responses and tissue damage. Many studies have demonstrated the use of hydrogels in bone-tissue engineering applications. In this report, the summary was conducted on various kinds of polymers and different modification methods of hydrogels to enhance bone formation. The results revealed that hy…
The Deep-Sea Natural Products, Biogenic Polyphosphate (Bio-PolyP) and Biogenic Silica (Bio-Silica), as Biomimetic Scaffolds for Bone Tissue Engineeri…
2013
Bone defects in human, caused by fractures/nonunions or trauma, gain increasing impact and have become a medical challenge in the present-day aging population. Frequently, those fractures require surgical intervention which ideally relies on autografts or suboptimally on allografts. Therefore, it is pressing and likewise challenging to develop bone substitution materials to heal bone defects. During the differentiation of osteoblasts from their mesenchymal progenitor/stem cells and of osteoclasts from their hemopoietic precursor cells, a lineage-specific release of growth factors and a trans-lineage homeostatic cross-talk via signaling molecules take place. Hence, the major hurdle is to fab…
From single fiber to macro-level mechanics: A structural finite-element model for elastomeric fibrous biomaterials
2014
In the present work, we demonstrate that the mesoscopic in-plane mechanical behavior of membrane elastomeric scaffolds can be simulated by replication of actual quantified fibrous geometries. Elastomeric electrospun polyurethane (ES-PEUU) scaffolds, with and without particulate inclusions, were utilized. Simulations were developed from experimentally-derived fiber network geometries, based on a range of scaffold isotropic and anisotropic behaviors. These were chosen to evaluate the effects on macro-mechanics based on measurable geometric parameters such as fiber intersections, connectivity, orientation, and diameter. Simulations were conducted with only the fiber material model parameters a…
Non-cross-linked porcine-based collagen I-III membranes do not require high vascularization rates for their integration within the implantation bed: …
2012
There are conflicting reports concerning the tissue reaction of small animals to porcine-based, non-cross-linked collagen I-III membranes/matrices for use in guided tissue/bone regeneration. The fast degradation of these membranes/matrices combined with transmembrane vascularization within 4 weeks has been observed in rats compared with the slow vascularization and continuous integration observed in mice. The aim of the present study was to analyze the tissue reaction to a porcine-based non-cross-linked collagen I-III membrane in mice. Using a subcutaneous implantation model, the membrane was implanted subcutaneously in mice for up to 60 days. The extent of scaffold vascularization, tissue …
The pre-vascularisation of a collagen-chondroitin sulphate scaffold using human amniotic fluid-derived stem cells to enhance and stabilise endothelia…
2015
Abstract A major problem in tissue engineering (TE) is graft failure in vivo due to core degradation in in vitro engineered constructs designed to regenerate thick tissues such as bone. The integration of constructs post-implantation relies on the rapid formation of functional vasculature. A recent approach to overcome core degradation focuses on the creation of cell-based, pre-engineered vasculature formed within the TE construct in vitro , prior to implantation in vivo . The primary objective of this study was to investigate whether an amniotic fluid-derived stem cell (AFSC)–human umbilical vein endothelial cell (HUVEC) co-culture could be used to engineer in vitro vasculature in a collag…