Search results for "Tito"

showing 10 items of 719 documents

E-bike battery charging: Methods and circuits

2013

Today, academic and industrial research is focused on innovative battery charging methods to ensure complete mobility of both handheld devices and electric vehicles. Wireless power transfer is actually the leading strategy even if efficiency related issues are to be solved for a successful marketing. In this paper, a wireless battery charging station is proposed for electric assisted pedal bikes. If compared with existing wireless solutions, the proposed system architecture improves power conversion efficiency of the charging equipment. The simulation model of the whole charging station is described in detail. The transmitter, receiver and inductive coupling circuits are described and desig…

Battery (electricity)Engineeringbusiness.industryvehicular and wireless technologieTransmitterElectrical engineeringwireless power transferTopology (electrical circuits)Settore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciCharging stationSystems architecturewireless battery chargingWirelessinductive power transferAutomotive batteryWireless power transferbusiness2013 International Conference on Clean Electrical Power (ICCEP)
researchProduct

Investigation of inductive coupling solutions for E-bike wireless charging

2015

Wireless charging of electric vehicle batteries is a major topic for academic and industrial research. The wireless charging is based on the inductive coupling between a primary coil, connected to the grid, and a secondary coil, connected to the vehicle battery. Wireless battery charging provides benefits in terms of comfort for the drivers, who should just park to start the charging operation, without needing to plug in the vehicle. Wireless charging is particularly convenient for E-bike users. For the bicycle charging, the inductive coupling should be implemented through a compact and light-weight solution. In this paper, different options of inductively coupled coils for E- bike charging…

Battery (electricity)Engineeringbusiness.product_categorybusiness.industryElectrical engineeringSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciInductive chargingGridInductive couplingelectric vehicles inductive power transfer magnetic field simulation wireless chargingInductanceHardware_GENERALElectromagnetic coilElectric vehicleWirelessbusiness
researchProduct

Wireless battery charging for electric bicycles

2017

The contactless solution is increasingly spreading as method of battery charging for Electric Vehicles (EVs). The standard technology of contactless EV battery charging is based on the Inductive Power Transfer (IPT) between two coupled coils, one connected to the electrical grid and the other one connected to the rechargeable battery. The IPT provides benefits in terms of safety and comfort, due to the absence of a plug-in operation. In this paper, an overview on the IPT applied to the battery charging of electric bicycles is provided, with some general considerations on the technical implications. Moreover, a prototype of contactless battery charging for E-bikes is proposed and described.

Battery (electricity)IPTEngineeringbusiness.industryRenewable Energy Sustainability and the Environment020209 energyElectrical engineeringwireless power transferEnergy Engineering and Power Technology02 engineering and technologyContactless battery chargingSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciElectrical gridSettore ING-INF/01 - ElettronicaSettore ING-IND/31 - Elettrotecnica0202 electrical engineering electronic engineering information engineeringWirelessMaximum power transfer theorembusiness
researchProduct

A 9-level three-phase multilevel converter with harmonic mitigation and integrated battery balancing

2019

In this paper, a 9 level three-phase multilevel converter with a harmonic mitigation control method and an integrated battery balancing algorithm for automotive purpose is proposed. Each level of the converter is composed by a buck-boost converter and an h-bridge in cascaded connection. The control algorithm is implemented to achieve the harmonic mitigation on the output voltage waveform and to maintain the battery input voltages balanced. The design and operation of the system is described, and simulation study is reported using Matlab/Simulink platform.

Battery (electricity)Multilevel Inverters; Total Harmonic Distortion (THD); DC-AC conversionSelective Harmonic Mitigation (SHM); Selective Harmonic Elimination (SHE); cell balancingComputer science020209 energyAutomotive industry02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciSelective Harmonic Mitigation (SHM)Multilevel InvertersMultilevel Inverter0202 electrical engineering electronic engineering information engineeringElectronic engineeringWaveformMATLABcomputer.programming_languageSelective Harmonic Elimination (SHE)business.industryTotal Harmonic Distortion (THD)020208 electrical & electronic engineeringHarmonic mitigationcell balancingDC-AC conversionSelective Harmonic Mitigation (SHM)DC-AC conversionSettore ING-IND/31 - ElettrotecnicaThree-phasebusinesscomputerControl methodsVoltage
researchProduct

Efficient contactless power transfer system for EVs

2016

Based on the inductive power transfer (IPT), the contactless approach allows safe and comfortable operations of battery charging for Electric Vehicles (EVs). In this paper, a contactless system particularly suitable for E-bike battery charging is proposed. A practical realization of the system has been carried out, aiming at the system evaluation in terms of working and efficiency. Through a phase shift modulation, a power regulation has been implemented. The target power level is 100 W.

Battery (electricity)Power regulationbusiness.industryComputer science020208 electrical & electronic engineeringelectric vehicleElectrical engineeringSystem evaluation02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciPower levelelectric vehicles; inductive power transfer; contactless charging; vehicle-to-grid.ModulationLogic gate0202 electrical engineering electronic engineering information engineeringcontactless chargingMaximum power transfer theoremComputerSystemsOrganization_SPECIAL-PURPOSEANDAPPLICATION-BASEDSYSTEMS020201 artificial intelligence & image processinginductive power transfervehicle-to-gridbusinessRealization (systems)electric vehicles
researchProduct

Experimental Investigation on Magnetic Field Effects of IPT for Electric Bikes

2018

The wireless power transmission (WPT) is increasingly representing a promising technology and an innovative solution, especially for the electric vehicles (EVs) battery charging. The inductive power transfer (IPT) is the standard technology of wireless charging: the energy transfer occurs between two magnetically coupled coils. The IPT-based battery charging is especially convenient for E-bikes and the physiological effects related to the generated magnetic fields should be estimated. In this context, this work presents a 200Â W prototype of wireless battery charger for E-bikes. In addition, the measurements regarding the surrounding magnetic field are given in detail in order to evaluate t…

Battery (electricity)Power transmissionbusiness.industryComputer science020209 energyMechanical Engineering020208 electrical & electronic engineeringElectrical engineeringEnergy Engineering and Power Technologymagnetic field02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciMagnetic fieldSettore ING-IND/31 - ElettrotecnicaHardware_GENERALElectric bicycle0202 electrical engineering electronic engineering information engineeringWirelesswireless battery charginginductive power transferElectrical and Electronic EngineeringbusinessSettore ING-INF/07 - Misure Elettriche E Elettroniche
researchProduct

Wireless Power Transmission for house appliances: A small-scale resonant coupling prototype

2016

This paper presents a low cost prototype of wireless power transfer system based on resonant coupling. The system here proposed can be useful for house appliances battery charging systems: as a matter of fact, it consists mainly of two copper wire coils or windings, placed one in front of the other on the same axis. By exploiting the coils resonance coupling effect, electric energy can be transferred from the inductor coil to the receiver in order to charge the batteries. Low cost experimental tests demonstrated the effectiveness of the proposed wireless power transfer prototype, being it capable to reach an efficiency of about 80% and more along a distance of 30 cm.

Battery (electricity)Resonant inductive couplingEngineeringEnergy Engineering and Power Technology02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciInductorbattery chargerHardware_GENERAL0202 electrical engineering electronic engineering information engineeringElectronic engineeringWirelessWireless power transferCouplingPower transmissionRenewable Energy Sustainability and the Environmentbusiness.industry020208 electrical & electronic engineeringElectrical engineering020206 networking & telecommunicationsWireless transmissionSettore ING-IND/31 - ElettrotecnicaComputer Networks and Communicationelectric house applianceHardware and ArchitectureElectromagnetic coilbusinessbattery charger; electric house appliances; Wireless transmission; Computer Networks and Communications; Hardware and Architecture; Energy Engineering and Power Technology; Renewable Energy Sustainability and the Environment2016 AEIT International Annual Conference (AEIT)
researchProduct

A Bidirectional IPT system for Electrical Bicycle Contactless Energy Transfer

2019

Contactless Energy Transfer characterized by Inductive Power Transfer (IPT) is a viable solution for Electric Vehicle (EV) battery charging, giving advantages in terms of safety, comfort and automatism of the recharging operation. IPT is a smart option for the Vehicle- To-Grid (V2G) implementation as well: the EV's battery can provide power to other users, if possible and if required, in order to adequately respond to an active demand scenario. IPT shall therefore allow a Bidirectional power flow, so that it can be properly defined as Bidirectional IPT (BIPT). In this paper, a 300 W BIPT system for E-bikes is proposed and experimental results are shown as well. Considering power level and s…

Battery (electricity)business.product_categoryComputer science020209 energyEnergy transferVehicle-to-grid010103 numerical & computational mathematics02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciSettore ING-INF/01 - Elettronica01 natural sciencesPower levelElectric bicycleElectric vehicle0202 electrical engineering electronic engineering information engineeringMaximum power transfer theorem0101 mathematicsWireless battery chargingContactless energy transferbusiness.industryElectrical engineeringVehicle-to-gridInductive power transferPower (physics)Power flowbusiness2019 8th International Conference on Renewable Energy Research and Applications (ICRERA)
researchProduct

Control subsystem design for wireless power transfer

2014

Recently, the wireless power transfer has been increasingly employed. Particularly for the electric vehicles, the wireless solution is attractive for contactless battery charging, based on the Inductive Power Transfer (IPT). In this paper, a 150W prototype for IPT-based battery charging is presented and design criteria are reported. In addition to the power stage analysis, a proper control strategy is proposed. Simulation and experimental results are shown. The proposed control method aims at regulating the load current against variations in the magnetic coupling, so that the required amount of power can be supplied despite of unexpected decreases in the coupling efficiency.

Battery (electricity)control subsystem designEngineeringControl (management)IPT-based battery chargingWireless communicationwireless power transfermagnetic couplingCoilSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettriciSettore ING-INF/01 - ElettronicaBatterieReceiverCouplingcontactless battery charginginductive power transmissioncontrol system synthesiWirelessMaximum power transfer theoremWireless power transferinductive power transferInductancepower stage analysiecondary cellbusiness.industryElectrical engineeringTransmittercoupling efficiencyInductive couplingPower (physics)power flow controlInductancebusinessload current regulation
researchProduct

Modelling, simulation and characterization of Li-Ion battery cell

2019

The decarbonizing process of the transportation system and the spread of unplanned renewables energy source, such as photovoltaic and wind energies, brought the constant need of ever more efficient energy storage technologies. Among these technologies, batteries, particularly the li-ion chemistry, are widely used in automotive and energy storage applications. For an optimized management of the cell it is advisable to have models that can accurately describe cell behaviour. In this paper a battery model for performance simulation in automotive application is identified. The main shapes of battery cells with their own advantages and disadvantages are shown, and a roundup of the best available…

Battery (electricity)li-ionbusiness.industryPhotovoltaic systemProcess (computing)Automotive industrymodelingcellSettore ING-IND/32 - Convertitori Macchine E Azionamenti ElettricisimulationEnergy storageAutomotive engineeringRenewable energySettore ING-IND/31 - ElettrotecnicabatterycharacterizationbusinessEnergy sourceEfficient energy use2019 IEEE 5th International forum on Research and Technology for Society and Industry (RTSI)
researchProduct