Search results for "Tobacco"

showing 10 items of 323 documents

Preferential induction of 20S proteasome subunits during elicitation of plant defense reactions: towards the characterization of "plant defense prote…

2003

Plants have evolved efficient mechanisms to resist pathogens. The earliest defense response is the hypersensitive response (HR) considered as the main step leading to plant systemic acquired resistance (SAR) that protects the whole plant against a large spectrum of pathogens. We showed previously that elicitation of defense reactions in tobacco cells by cryptogein, a proteinaceous elicitor of plant defense reactions, leads to a rapid and differential accumulation of transcripts corresponding to genes encoding defense-induced (din) subunits of 20S proteasome: beta1din, alpha3din and alpha6din.Here, expression of these three subunits was investigated by Northern blotting and by Western blotti…

0106 biological sciencesHypersensitive responseProteasome Endopeptidase Complex[SDV]Life Sciences [q-bio]Protein subunitBlotting WesternGene ExpressionBiology01 natural sciencesBiochemistryMixed Function OxygenasesFungal Proteins03 medical and health sciencesMultienzyme ComplexesTobaccoPlant defense against herbivoryElectrophoresis Gel Two-DimensionalNorthern blotComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesAlgal ProteinsProteinsCell BiologyBlotting NorthernMolecular biologyCell biologyElicitor[SDV] Life Sciences [q-bio]BlotPlant LeavesTobacco Mosaic VirusCysteine EndopeptidasesProteasomeEnzyme InductionREPONSE DE LA PLANTESystemic acquired resistance010606 plant biology & botanyPeptide HydrolasesThe international journal of biochemistrycell biology
researchProduct

Hydrogen peroxide induces programmed cell death features in cultured tobacco BY-2 cells, in a dose-dependent manner

2001

Active oxygen species (AOS), especially hydrogen peroxide, play a critical role in the defence of plants against invading pathogens and in the hypersensitive response (HR). This is characterized by the induction of a massive production of AOS and the rapid appearance of necrotic lesions is considered as a programmed cell death (PCD) process during which a limited number of cells die at the site of infection. This work was aimed at investigating the mode of cell death observed in cultures of BY-2 tobacco cells exposed to H(2)O(2). It was shown that H(2)O(2) is able to induce various morphological cell death features in cultured tobacco BY-2 cells. The hallmarks of cell death observed with fl…

0106 biological sciencesHypersensitive responseTobacco BY-2 cellsProgrammed cell deathPhysiologyApoptosisPlant ScienceDNA FragmentationBiology01 natural sciences[SDV.BV.BOT] Life Sciences [q-bio]/Vegetal Biology/Botanics03 medical and health sciencesBotanyTobaccomedicineFragmentation (cell biology)Cell damageCells CulturedComputingMilieux_MISCELLANEOUS030304 developmental biologyCell Nucleus0303 health sciencesDose-Response Relationship DrugHydrogen Peroxide[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/Botanicsmedicine.diseaseMolecular biologyChromatinPlants ToxicCell cultureApoptosisCULTURE DE CELLULESignal transduction010606 plant biology & botanySignal Transduction
researchProduct

Involvement of putative glutamate receptors in plant defence signaling and NO production

2011

International audience; Ionotropic glutamate receptors (iGluRs) are non-selective cation channels permeable to calcium, present in animals and plants. In mammals, glutamate is a well-known neurotransmitter and recently has been recognized as an immunomodulator. As animals and plants share common mechanisms that govern innate immunity with calcium playing a key role in plant defence activation, we have checked the involvement of putative iGluRs in plant defence signaling. Using tobacco cells, we first provide evidence supporting the activity of iGluRs as calcium channels and their involvement in NO production as reported in animals. Thereafter, iGluRs were shown to be activated in response t…

0106 biological sciencesHypersensitive responsebiochemistry and molecular biologyplant defenceglutamate receptorCell Culture TechniquesGlutamic AcidBiologycalcium signaling01 natural sciencesBiochemistrytobaccoFungal Proteins03 medical and health sciencesnitric oxideelicitorsExcitatory Amino Acid Agonists[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular Biologyrésistance végétalePlant Proteins030304 developmental biologyCalcium signaling0303 health sciencesVoltage-dependent calcium channelAlgal ProteinsGlutamate receptorGeneral MedicineGlutamic acidImmunity InnateElicitortabacReceptors GlutamateBiochemistryMetabotropic glutamate receptorNMDA receptorCalciumExcitatory Amino Acid Antagonists010606 plant biology & botany
researchProduct

Activation of a nuclear-localized SIPK in tobacco cells challenged by cryptogein, an elicitor of plant defence reactions.

2009

When a plant cell is challenged by a well-defined stimulus, complex signal transduction pathways are activated to promote the modulation of specific sets of genes and eventually to develop adaptive responses. In this context, protein phosphorylation plays a fundamental role through the activation of multiple protein kinase families. Although the involvement of protein kinases at the plasma membrane and cytosolic levels are now well-documented, their nuclear counterparts are still poorly investigated. In the field of plant defence reactions, no known study has yet reported the activation of a nuclear protein kinase and/or its nuclear activity in plant cells, although some protein kinases, e.…

0106 biological sciencesMAPK/ERK pathwayMolecular Sequence DataActive Transport Cell NucleusBiology01 natural sciencesBiochemistryMAP2K703 medical and health sciencesCytosolTobaccoASK1Protein phosphorylation[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyAmino Acid SequenceNuclear proteinProtein kinase AMolecular BiologyConserved Sequence030304 developmental biologyPlant ProteinsCell Nucleus0303 health sciencesKinasePlant ExtractsAlgal ProteinsLife SciencesCell BiologyCell biologyEnzyme ActivationBiochemistrySignal transductionMitogen-Activated Protein KinasesSequence Alignment010606 plant biology & botanySignal TransductionThe Biochemical journal
researchProduct

AM fungal exudates activate MAP kinases in plant cells in dependence from cytosolic Ca2+ increase

2011

International audience; The molecular dialogue occurring prior to direct contact between the fungal and plant partners of arbuscular-mycorrhizal (AM) symbioses begins with the release of fungal elicitors, so far only partially identified chemically, which can activate specific signaling pathways in the host plant. We show here that the activation of MAPK is also induced by exudates of germinating spores of Gigaspora margarita in cultured cells of the non-leguminous species tobacco (Nicotiana tabacum), as well as in those of the model legume Lotus japonicus. MAPK activity peaked about 15 min after the exposure of the host cells to the fungal exudates (FE). FE were also responsible for a rapi…

0106 biological sciencesMAPK/ERK pathwayTime FactorsMAP Kinase Signaling SystemPhysiologyNicotiana tabacumLotus japonicusPlant ScienceComplex MixturesBiology01 natural sciences03 medical and health sciencesPlant CellsTobaccoBotanyGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyGlomeromycotaSymbiosisNicotiana plumbaginifoliaPlant Proteins030304 developmental biologyMitogen-Activated Protein Kinase Kinasesarbuscular-mycorrhizal fungi0303 health sciencesdiffusible factorcalciumKinasefungiArbuscular-mycorrhizal fungi; Signaling; Diffusible factor; MAPK; Calciumfood and beveragesSpores FungalPlant cellbiology.organism_classificationMAPKsym pathwayCell biologyCytosolCell cultureLotus[SDE.BE]Environmental Sciences/Biodiversity and Ecologysignaling010606 plant biology & botanyPlant Physiology and Biochemistry
researchProduct

Plasma membrane sterol complexation, generated by filipin, triggers signaling responses in tobacco cells

2010

International audience; The effects of changes in plasma membrane (PM) sterol lateral organization and availability on the control of signaling pathways have been reported in various animal systems, but rarely assessed in plant cells. In the present study, the pentaene macrolide antibiotic filipin III, commonly used in animal systems as a sterol sequestrating agent, was applied to tobacco cells. We show that filipin can be used at a non-lethal concentration that still allows an homogeneous labeling of the plasma membrane and the formation of filipin-sterol complexes at the ultrastructural level. This filipin concentration triggers a rapid and transient NADPH oxidase-dependent production of …

0106 biological sciencesMembrane Fluidity[SDV]Life Sciences [q-bio]CellBiophysicsPLANTEBiology01 natural sciencesFilipinBiochemistry03 medical and health scienceschemistry.chemical_compoundTobaccomedicinepolycyclic compoundsMEMBRANE PLASMIQUEFilipinPhosphorylation030304 developmental biologySterolchemistry.chemical_classification0303 health sciencesReactive oxygen speciesCell DeathCell MembranePhytosterolsPlantCell BiologyPlant cellSterolCell biologymedicine.anatomical_structurechemistrySignalizationPotassiumSIGNALISATIONPhosphorylationlipids (amino acids peptides and proteins)sense organsSignal transductionReactive Oxygen SpeciesLaurdanSignal Transduction010606 plant biology & botanyPlasma membraneBiochimica et Biophysica Acta (BBA) - Biomembranes
researchProduct

Evidence for specific, high-affinity binding sites for a proteinaceous elicitor in tobacco plasma membrane

1995

Abstract Binding of cryptogein, a proteinaceous elicitor, was studied on tobacco plasma membrane. The binding of the [125I]cryptogein was saturable, reversible and specific with an apparent Kd of 2 nM. A single class of cryptogein binding sites was found with a sharp optimum pH for binding at about pH 7.0. The high-affinity correlates with cryptogein concentrations required for biological activity in vivo.

0106 biological sciencesNicotiana tabacumBiophysics[SDV.BC]Life Sciences [q-bio]/Cellular Biology01 natural sciencesBiochemistryFungal Proteins03 medical and health sciencesStructural BiologyIn vivoTobaccoGeneticsBinding siteReceptor[SDV.BC] Life Sciences [q-bio]/Cellular BiologyMolecular BiologyComputingMilieux_MISCELLANEOUS030304 developmental biology0303 health sciencesBinding SitesbiologyNicotiana tabacumChemistryAlgal ProteinsCell MembraneElicitinBiological activityCell BiologyElicitorbiology.organism_classification3. Good healthElicitorKineticsPlants ToxicMembraneBiochemistryCryptogeinPlasma membraneReceptor010606 plant biology & botany
researchProduct

Regulation of Nicotiana tabacum osmotic stress-activated protein kinase and its cellular partner GAPDH by nitric oxide in response to salinity

2010

Several studies focusing on elucidating the mechanism of NO (nitric oxide) signalling in plant cells have highlighted that its biological effects are partly mediated by protein kinases. The identity of these kinases and details of how NO modulates their activities, however, remain poorly investigated. In the present study, we have attempted to clarify the mechanisms underlying NO action in the regulation of NtOSAK (Nicotiana tabacum osmotic stress-activated protein kinase), a member of the SNF1 (sucrose non-fermenting 1)-related protein kinase 2 family. We found that in tobacco BY-2 (bright-yellow 2) cells exposed to salt stress, NtOSAK is rapidly activated, partly through a NO-dependent pr…

0106 biological sciencesOsmosisSalinityNicotiana tabacumMolecular Sequence DataNitric Oxide01 natural sciencesBiochemistry03 medical and health sciencesEnzyme activatorStress PhysiologicalTobaccoASK1[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyAmino Acid SequenceProtein kinase AMolecular BiologyGlyceraldehyde 3-phosphate dehydrogenaseCells Cultured030304 developmental biologyPlant Proteins0303 health sciencesbiologyKinaseGlyceraldehyde-3-Phosphate DehydrogenasesLife SciencesCell BiologyS-Nitrosylationbiology.organism_classification3. Good healthBiochemistrybiology.proteinPhosphorylationProtein Kinases010606 plant biology & botany
researchProduct

NADPH Oxidase-Mediated Reactive Oxygen Species Production: Subcellular Localization and Reassessment of Its Role in Plant Defense

2009

International audience; Chemiluminescence detection of reactive oxygen species (ROS) triggered in tobacco BY-2 cells by the fungal elicitor cryptogein was previously demonstrated to be abolished in cells transformed with an antisense construct of the plasma membrane NADPH oxidase, NtrbohD. Here, using electron microscopy, it has been confirmed that the first hydrogen peroxide production occurring a few minutes after challenge of tobacco cells with cryptogein is plasma membrane located and NtrbohD mediated. Furthermore, the presence of NtrbohD in detergent-resistant membrane fractions could be associated with the presence of NtrbohD-mediated hydrogen peroxide patches along the plasma membran…

0106 biological sciencesPhysiologyBiology01 natural sciencesDNA AntisenseFungal Proteins03 medical and health sciencesMicroscopy Electron TransmissionNtrbohDTobaccoGene expressionNADPHPlant defense against herbivory[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyCells CulturedPlant Proteins030304 developmental biologychemistry.chemical_classification0303 health sciencesReactive oxygen speciesOxidase testNADPH oxidaseHydrogen PeroxideGeneral MedicinePlants Genetically ModifiedSubcellular localizationElicitorPlant LeavesEnzymechemistryBiochemistrybiology.proteinREACTIVE OXYGEN SPECIES (ROS)OxidoreductasesReactive Oxygen SpeciesAgronomy and Crop Science010606 plant biology & botanyMolecular Plant-Microbe Interactions®
researchProduct

Real-time electrochemical detection of extracellular nitric oxide in tobacco cells exposed to cryptogein, an elicitor of defence responses

2008

International audience; It was previously reported that cryptogein, an elicitor of defence responses, induces an intracellular production of nitric oxide (NO) in tobacco. Here, the possibility was explored that cryptogein might also trigger an increase of NO extracellular content through two distinct approaches, an indirect method using the NO probe 4,5-diaminofluorescein (DAF-2) and an electrochemical method involving a chemically modified microelectrode probing free NO in biological media. While the chemical nature of DAF-2-reactive compound(s) is still uncertain, the electrochemical modified microelectrodes provide real-time evidence that cryptogein induces an increase of extracellular N…

0106 biological sciencesPhysiologyPLANT DEFENSE RESPONSEPlant ScienceElectrochemical detectionBiology01 natural sciencesDIETHYLAMINE NONOATENitric oxide[SDV.BV.BOT] Life Sciences [q-bio]/Vegetal Biology/BotanicsFungal Proteins03 medical and health scienceschemistry.chemical_compoundTobaccoBotanyElectrochemistryExtracellularCells Cultured030304 developmental biology0303 health sciencesFungal proteinAlgal Proteins[SDV.BV.BOT]Life Sciences [q-bio]/Vegetal Biology/BotanicsResearch PapersElectrochemical gas sensorElicitorMicroelectrodechemistryBiophysicsDIAMINOFLUORESCEINplant defence responsesIntracellularELECTROCHEMICAL SENSORNITRIC OXIDE010606 plant biology & botany
researchProduct