Search results for "Toe"

showing 10 items of 3824 documents

Tenfold increase in efficiency from a reference blue OLED

2018

Abstract Starting from a reference single-layer light-emitting diode based on the blue phosphorescent bis-cyclometallated iridium complex FIrpic as guest, hosted in a PVK (non-conjugated poly(vynilcarbazole)) matrix, different strategies are followed to improve the efficiency of the devices through the combination of solution processed and evaporated layers. Injection of charges from the electrodes has been varied by using different conductive PEDOT: PSS as hole injection layer and a nanoscale Cs2CO3 interlayer as electron injection and hole-blocking film. Furthermore, a separated electron injection/hole blocking evaporated layer, TPBi or 3TPYMB, is introduced in double-layer devices to enh…

Materials sciencebusiness.industryBiophysicschemistry.chemical_element02 engineering and technologyGeneral ChemistryElectron010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesBiochemistryAtomic and Molecular Physics and Optics0104 chemical scienceschemistryPEDOT:PSSElectrodeOLEDOptoelectronicsIridium0210 nano-technologyPhosphorescencebusinessLayer (electronics)DiodeJournal of Luminescence
researchProduct

Photoelectrochemical study of passive films on stainless steel in neutral solutions

1991

Abstract Passive films formed on AISI 304 stainless steel in neutral solutions are studied using photoelectrochemical technique. Photocurrents were investigated as a function of the wavelength of the incident light, the electrode potential and the time. The results of the measurements together with capacity measurements indicate that the passive film on AISI 304 shows characteristics of a highly doped amorphous or highly disordered n-type semiconductor. The potential dependence of the optical gap values and of the photocurrent transients can be interpreted assuming that the passive film is an iron-chromium oxide solid solution.

PhotocurrentMaterials sciencebusiness.industryGeneral Chemical EngineeringDopingMetallurgyOxideRayAmorphous solidchemistry.chemical_compoundSemiconductorchemistryElectrochemistryOptoelectronicsbusinessElectrode potentialSolid solutionElectrochimica Acta
researchProduct

Tuning four-wave mixing through temperature in ethanol-filled photonic crystal fiber

2016

In this paper, continuous tuning of four-wave mixing bands in an ethanol-filled photonic crystal fiber is investigated. A wide tuning range of the parametric bands, from 745 nm to 920 nm (signal) and from 1260 nm to 1710 nm (idler), is achieved through the thermo-optic effect. This corresponds to a frequency tuning range higher than 2000 cm−1; such wide range can be particularly useful in applications that require broadband wavelength conversion, e.g., CARS microscopy. Numerical calculations are in good agreement with experimental measurements.

Materials sciencebusiness.industry02 engineering and technologyMicrostructured optical fiber021001 nanoscience & nanotechnology01 natural sciencesSignal010309 opticsFour-wave mixingOpticsZero-dispersion wavelength0103 physical sciencesMicroscopyOptoelectronicsDispersion-shifted fiber0210 nano-technologybusinessPhotonic crystalPhotonic-crystal fiber2016 18th International Conference on Transparent Optical Networks (ICTON)
researchProduct

Surface magnetism studied by photoelectron spectromicroscopy with high spatial and time resolution

2004

Abstract Photoemission electron microscopy (PEEM) is widely used for the study of magnetic surfaces and thin films. Ferromagnetic and antiferromagnetic microstructures are investigated exploiting magnetic circular and linear dichroism in the soft X-ray range using tuneable synchrotron radiation. Local dichroism spectroscopy gives access to magnetic moments of the elements in compounds or multilayer materials. Beyond these achievements, the method bears a high future potential with respect to an increased lateral resolution via aberration correction of the electron optics and a high time resolution in the 100 ps range for the study of dynamic processes. In addition, photoelectron spin polari…

RadiationMaterials scienceMagnetic momentCondensed matter physicsMagnetismAnalytical chemistrySynchrotron radiationDichroismCondensed Matter PhysicsLinear dichroismAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials SciencePhotoemission electron microscopyFerromagnetismElectron opticsPhysical and Theoretical ChemistrySpectroscopyJournal of Electron Spectroscopy and Related Phenomena
researchProduct

Effect of humidity on the hysteresis of single walled carbon nanotube field-effect transistors

2008

Single walled carbon nanotube field-effedt transistores (SWCNT FETs) are attributed as possible building blocks for future molecular electronics. But often these transistors seem to randomly display hysteresis in their transfer characteristics. One reason for this is suggested to be water molecules adsorbed to the surface of the gate dielectric in this study we investigate the thysteresis of SWCNT FETs at different relative humidities. We find that SWCNT FETs having atomic layer deposited (ALD) Hf0 2 -Ti0 2 .- Hf0 2 as a gate dielectric retain their. ambient condition hysteresis better in dry N2 environment than the more commonly used SiO 2 gate oxide.

Materials sciencebusiness.industryGate dielectricTransistorMolecular electronicsNanotechnologyCarbon nanotubeCondensed Matter PhysicsElectronic Optical and Magnetic Materialslaw.inventionHysteresislawGate oxideOptoelectronicsField-effect transistorbusinessLayer (electronics)physica status solidi (b)
researchProduct

Piezoelectric Actuated Nonlinear Energy Sink With Tunable Attenuation Efficiency

2019

Abstract Comparing to linear vibration absorbers, nonlinear energy sinks (NESs) have attracted worldwide attention for their intrinsic characteristics of targeted energy transfer or energy pumping in a relatively wide frequency range. Unfortunately, they are highly dependent on the vibration amplitude to be attenuated and will play its role only if the external load exceeds a specific threshold value. Different from the passive bistable NES, a novel piezoelectric nonlinear energy sink (PNES) is designed by introducing in-phase actuation to compensate or enhance the external vibration loads, thus triggering the NES operating in high attenuation efficiency. The nonlinear mathematic model of t…

Physicsgeographygeography.geographical_feature_categoryCantileverbusiness.industryMechanical EngineeringAttenuationCondensed Matter Physics01 natural sciencesPiezoelectricitySink (geography)010305 fluids & plasmasNonlinear systemMechanics of Materials0103 physical sciencesOptoelectronicsbusiness010301 acousticsExcitationJournal of Applied Mechanics
researchProduct

40-GHz photonic waveform generator by linear shaping of four spectral sidebands

2015

International audience; We show that the amplitude and phase shaping of only four sidebands of the optical spectrum is sufficient to synthesize parabolic, triangular, or flat-top pulse trains at high repetition rates. Selection of the symmetric carrier-suppressed waveform is easily achieved by changing the phase difference between the inner and outer spectral lines. Experiments carried out at a repetition rate of 40 GHz confirm the high quality of the intensity profiles that are obtained.

Physics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Signal generatorbusiness.industryPhase (waves)02 engineering and technology01 natural sciencesPulse shapingAtomic and Molecular Physics and OpticsSpectral line010309 optics020210 optoelectronics & photonicsOpticsAmplitudeQuality (physics)0103 physical sciences0202 electrical engineering electronic engineering information engineeringWaveformsense organsPhotonicsbusiness
researchProduct

Compact all-diffractive setup for spectral synthesis with non-uniform illumination

2009

Optical filters based on diffractive optical elements (DOE) have received increased attention since the development of the first synthetic spectrum as a tool for correlation spectroscopy [1]. The production of a synthetic spectrum requires the design of a DOE that transforms the spectrum associated with the incident light into the spectrum of interest. Based on this procedure, several approaches have been reported in the literature [1–4]. In general, these configurations employ angular dispersion elements for spectrum tailoring, so they are restricted to working off-axis, and most of them need an extra focusing refractive lens.

Physicsbusiness.industryInfraredKinoformElectromagnetic spectrumSpectrum (functional analysis)Physics::OpticsElectromagnetic radiationRayComputer-generated holographyOpticsOptoelectronicsbusinessOptical filterCLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference
researchProduct

Impact of Ir modification on the durability of FeNC catalysts under start-up and shutdown cycle conditions

2022

A common problem associated with FeNC catalysts is their poor stability dominated by the carbon oxidation reaction (COR). In this work, the feasibility of stabilizing FeNC catalysts with small quantities of Ir was explored. With iridium being present, instead of COR the oxygen evolution reaction should be favored. The impact on structure and morphology was investigated by 57Fe Mössbauer spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy and transmission electron microscopy. The catalytic activity and durability for the oxygen reduction reaction was evaluated by rotating ring disc electrode experiments and accelerated stress tests mimicking the start-up and shutdown cycle (SS…

Materials scienceRenewable Energy Sustainability and the EnvironmentOxygen evolutionchemistry.chemical_elementProton exchange membrane fuel cellGeneral Chemistry540RedoxCatalysissymbols.namesakechemistryX-ray photoelectron spectroscopyChemical engineeringsymbolsGeneral Materials ScienceIridiumRaman spectroscopyFaraday efficiencyJournal of Materials Chemistry A
researchProduct

Accurate mode characterization of two-mode optical fibers by in-fiber acousto-optics.

2016

Acousto-optic interaction in optical fibers is exploited for the accurate and broadband characterization of two-mode optical fibers. Coupling between LP01 and LP1m modes is produced in a broadband wavelength range. Difference in effective indices, group indices, and chromatic dispersions between the guided modes, are obtained from experimental measurements. Additionally, we show that the technique is suitable to investigate the fine modes structure of LP modes, and some other intriguing features related with modes' cut-off.

CouplingMode volumeOptical fiberMaterials sciencebusiness.industryPhysics::OpticsAcousto-optics02 engineering and technologyÒptica01 natural sciencesAtomic and Molecular Physics and Opticslaw.invention010309 optics020210 optoelectronics & photonicsDouble-clad fiberOpticslaw0103 physical sciences0202 electrical engineering electronic engineering information engineeringOptoelectronicsChromatic scaleFiberbusinessRefractive indexOptics express
researchProduct