Search results for "Transducin"

showing 10 items of 169 documents

Intracellular osteopontin protects from autoimmunity-driven lymphoma development inhibiting TLR9-MYD88-STAT3 signaling

2022

Abstract Background Autoimmune disorders, including Systemic Lupus Erythematosus (SLE), are associated with increased incidence of hematological malignancies. The matricellular protein osteopontin (OPN) has been linked to SLE pathogenesis, as SLE patients show increased serum levels of OPN and often polymorphisms in its gene. Although widely studied for its pro-tumorigenic role in different solid tumours, the role of OPN in autoimmunity-driven lymphomagenesis has not been investigated yet. Methods To test the role of OPN in the SLE-associated lymphomagenesis, the SLE-like prone Faslpr/lpr mutation was transferred onto an OPN-deficient background. Spleen from Faslpr/lpr and OPN-/-Faslpr/lpr …

STAT3 Transcription FactorMice Inbred MRL lprCancer ResearchLymphomaSettore MED/08 - Anatomia PatologicaAutoimmune DiseasesMice Inbred C57BLAutoimmunity Diffuse large B cell lymphoma OsteopontinMiceOncologyToll-Like Receptor 9Myeloid Differentiation Factor 88HumansAnimalsLupus Erythematosus SystemicSettore MED/05 - Patologia ClinicaMolecular MedicineSignal TransductionAdaptor Proteins Signal TransducingMolecular Cancer
researchProduct

PARD3 Inactivation in Lung Squamous Cell Carcinomas Impairs STAT3 and Promotes Malignant Invasion.

2015

Abstract Correct apicobasal polarization and intercellular adhesions are essential for the appropriate development of normal epithelia. Here, we investigated the contribution of the cell polarity regulator PARD3 to the development of lung squamous cell carcinomas (LSCC). Tumor-specific PARD3 alterations were found in 8% of LSCCs examined, placing PARD3 among the most common tumor suppressor genes in this malignancy. Most PAR3-mutant proteins exhibited a relative reduction in the ability to mediate formation of tight junctions and actin-based protrusions, bind atypical protein kinase C, activate RAC1, and activate STAT3 at cell confluence. Thus, PARD3 alterations prevented the formation of c…

STAT3 Transcription Factorrac1 GTP-Binding ProteinCancer ResearchLung NeoplasmsCellMice NudeRAC1Cell Cycle ProteinsBiologyArticleCell MovementCell Line TumorCell polaritymedicineAnimalsHumansNeoplasm InvasivenessProtein Kinase CAdaptor Proteins Signal TransducingCell ProliferationConfluencyTight junctionBase SequenceCell growthLiver NeoplasmsMembrane ProteinsSequence Analysis DNACell biologymedicine.anatomical_structureOncologyCell cultureMutationCancer researchCarcinoma Squamous CellTranscriptomeIntracellularNeoplasm TransplantationCancer research
researchProduct

Physical and Genetic Interactions Link the Yeast Protein Zds1p with mRNA Nuclear Export

2005

Eukaryotic gene expression requires the export of mRNA from the nucleus to the cytoplasm. The DEAD box protein Dbp5p is an essential export factor conserved from yeast to man. A fraction of Dbp5p forms a complex with nucleoporins of the cytoplasmic filaments of the nuclear pore complex. Gfd1p was identified originally as a multicopy suppressor of the rat8-2 ts allele of DBP5. Here we reported that Dbp5p and Gfd1p interact with Zds1p, a protein previously identified as a multicopy suppressor in several yeast genetic screens. By using the two-hybrid system, we showed that Zds1p interacts in vivo with both Gfd1p and Dbp5p. In vitro binding experiments revealed that Gfd1p and Dbp5p bind directl…

Saccharomyces cerevisiae ProteinsMolecular Sequence DataMutantActive Transport Cell NucleusSaccharomyces cerevisiaeBiologyBiochemistryCytosolGene expressionmedicineRNA MessengerNuclear poreNuclear export signalMolecular BiologyAdaptor Proteins Signal TransducingDNA PrimersGeneticsMessenger RNABase SequenceNuclear cap-binding protein complexRNA FungalCell BiologyCell biologyCell nucleusmedicine.anatomical_structureNucleoporinGenome FungalJournal of Biological Chemistry
researchProduct

Zasp/Cypher internal ZM-motif containing fragments are sufficient to co-localize with α-actinin—Analysis of patient mutations

2005

Z-band alternatively spliced PDZ-containing protein (ZASP/Cypher) has an important role in maintaining Z-disc stability in striated and cardiac muscle. ZASP/Cypher interacts through its PDZ domain with the major Z-disc actin cross-linker, alpha-actinin. ZASP/Cypher also has a conserved sequence called the ZM-motif, and it is found in two alternatively spliced exons 4 and 6. We have shown earlier that the ZM-motif containing internal regions of two related proteins ALP and CLP36 interact with alpha-actinin rod region, and that the ZM-motif is important in targeting ALP to the alpha-actinin containing structures in cell. Here, we show that the ZASP/Cypher internal fragments containing either …

SarcomeresAmino Acid MotifsPDZ domainCHO Cellsmacromolecular substancesBiologyConserved sequenceStress fiber assemblyMyoblastsMiceExonCricetinaeStress FibersmedicineAnimalsHumansMyocyteActininMuscle SkeletalActinAdaptor Proteins Signal TransducingOrganellesGeneticsMyocardiumPoint mutationCardiac muscleExonsIntracellular MembranesCell BiologyLIM Domain Proteinsmusculoskeletal systemPeptide FragmentsCell biologymedicine.anatomical_structureMutationCardiomyopathiesProtein BindingExperimental Cell Research
researchProduct

A novel Usher protein network at the periciliary reloading point between molecular transport machineries in vertebrate photoreceptor cells.

2008

Contains fulltext : 69178.pdf (Publisher’s version ) (Closed access) The human Usher syndrome (USH) is the most frequent cause of combined deaf-blindness. USH is genetically heterogeneous with at least 12 chromosomal loci assigned to three clinical types, USH1-3. Although these USH types exhibit similar phenotypes in human, the corresponding gene products belong to very different protein classes and families. The scaffold protein harmonin (USH1C) was shown to integrate all identified USH1 and USH2 molecules into protein networks. Here, we analyzed a protein network organized in the absence of harmonin by the scaffold proteins SANS (USH1G) and whirlin (USH2D). Immunoelectron microscopic anal…

Scaffold proteinGenetics and epigenetic pathways of disease [NCMLS 6]XenopusCell Cycle ProteinsNerve Tissue ProteinsBiologyIn Vitro TechniquesNeuroinformatics [DCN 3]TransfectionModels BiologicalReceptors G-Protein-CoupledMiceChlorocebus aethiopsProtein Interaction MappingGeneticsPerception and Action [DCN 1]otorhinolaryngologic diseasesAnimalsHumansNeurosensory disorders [UMCN 3.3]Cell Cycle ProteinMicroscopy ImmunoelectronMolecular BiologyIntegral membrane proteinGenetics (clinical)Adaptor Proteins Signal TransducingRenal disorder [IGMD 9]GeneticsMice KnockoutExtracellular Matrix ProteinsCiliumSignal transducing adaptor proteinMembrane ProteinsGeneral MedicineTransmembrane proteinCell biologyMice Inbred C57BLCytoskeletal ProteinsEctodomainGenetic defects of metabolism [UMCN 5.1]COS CellsNIH 3T3 CellsCervical collarUsher SyndromesFunctional Neurogenomics [DCN 2]Photoreceptor Cells VertebrateSubcellular FractionsImmunity infection and tissue repair [NCMLS 1]
researchProduct

Phosphorylation of the Usher syndrome 1G protein SANS controls Magi2-mediated endocytosis.

2014

Item does not contain fulltext The human Usher syndrome (USH) is a complex ciliopathy with at least 12 chromosomal loci assigned to three clinical subtypes, USH1-3. The heterogeneous USH proteins are organized into protein networks. Here, we identified Magi2 (membrane-associated guanylate kinase inverted-2) as a new component of the USH protein interactome, binding to the multifunctional scaffold protein SANS (USH1G). We showed that the SANS-Magi2 complex assembly is regulated by the phosphorylation of an internal PDZ-binding motif in the sterile alpha motif domain of SANS by the protein kinase CK2. We affirmed Magi2's role in receptor-mediated, clathrin-dependent endocytosis and showed tha…

Scaffold proteinGuanylate kinaseMolecular Sequence DataPrimary Cell CultureNerve Tissue ProteinsBiologyEndocytosisPhotoreceptor cellExocytosisMiceCiliogenesisGeneticsmedicineAnimalsHumansProtein Interaction Domains and MotifsAmino Acid SequencePhosphorylationRNA Small InterferingSensory disorders Radboud Institute for Molecular Life Sciences [Radboudumc 12]Molecular BiologyGenetics (clinical)Adaptor Proteins Signal TransducingBinding SitesGeneral MedicineClathrinEndocytosisCell biologyMice Inbred C57BLRenal disorders Radboud Institute for Molecular Life Sciences [Radboudumc 11]medicine.anatomical_structureHEK293 CellsGene Expression RegulationCiliary pocketCarrier ProteinsSterile alpha motifGuanylate KinasesSequence AlignmentUsher SyndromesPhotoreceptor Cells VertebrateProtein BindingSignal TransductionHuman molecular genetics
researchProduct

Molecular basis of human Usher syndrome: deciphering the meshes of the Usher protein network provides insights into the pathomechanisms of the Usher …

2006

Usher syndrome (USH) is the most frequent cause of combined deaf-blindness in man. It is clinically and genetically heterogeneous and at least 12 chromosomal loci are assigned to three clinical USH types, namely USH1A-G, USH2A-C, USH3A (Davenport, S.L.H., Omenn, G.S., 1977. The heterogeneity of Usher syndrome. Vth Int. Conf. Birth Defects, Montreal; Petit, C., 2001. Usher syndrome: from genetics to pathogenesis. Annu. Rev. Genomics Hum. Genet. 2, 271-297). Mutations in USH type 1 genes cause the most severe form of USH. In USH1 patients, congenital deafness is combined with a pre-pubertal onset of retinitis pigmentosa (RP) and severe vestibular dysfunctions. Those with USH2 have moderate to…

Scaffold proteinModels MolecularUsher syndromePDZ domainProtocadherinCadherin Related ProteinsCell Cycle ProteinsNerve Tissue ProteinsBiologyDeafnessMyosinsCellular and Molecular NeuroscienceRetinitis pigmentosaotorhinolaryngologic diseasesmedicineAnimalsHumansAdaptor Proteins Signal TransducingGeneticsExtracellular Matrix ProteinsModels GeneticCadherinRetinal DegenerationSignal transducing adaptor proteinDyneinsMembrane Proteinsmedicine.diseaseCadherinsSensory SystemsOphthalmologyCytoskeletal ProteinsDisease Models AnimalMembrane proteinMyosin VIIaMutationMicrotubule ProteinsVestibule LabyrinthUsher SyndromesExperimental eye research
researchProduct

The GRIP1/14-3-3 Pathway Coordinates Cargo Trafficking and Dendrite Development

2014

SummaryRegulation of cargo transport via adaptor molecules is essential for neuronal development. However, the role of PDZ scaffolding proteins as adaptors in neuronal cargo trafficking is still poorly understood. Here, we show by genetic deletion in mice that the multi-PDZ domain scaffolding protein glutamate receptor interacting protein 1 (GRIP1) is required for dendrite development. We identify an interaction between GRIP1 and 14-3-3 proteins that is essential for the function of GRIP1 as an adaptor protein in dendritic cargo transport. Mechanistically, 14-3-3 binds to the kinesin-1 binding region in GRIP1 in a phospho-dependent manner and detaches GRIP1 from the kinesin-1 motor protein …

Scaffold proteinPDZ domainKinesinsNerve Tissue ProteinsDendriteBiologyGeneral Biochemistry Genetics and Molecular BiologyMotor proteinGene Knockout TechniquesMiceMicrotubulemedicineAnimalsMolecular BiologyAdaptor Proteins Signal TransducingPoint mutationSignal transducing adaptor proteinDendritesCell BiologyCell biologyProtein Transportmedicine.anatomical_structure14-3-3 ProteinsMutationCarrier ProteinsFunction (biology)Protein BindingSignal TransductionTranscription FactorsDevelopmental BiologyDevelopmental Cell
researchProduct

Direct interaction of the Usher syndrome 1G protein SANS and myomegalin in the retina

2011

Contains fulltext : 96822.pdf (Publisher’s version ) (Closed access) The human Usher syndrome (USH) is the most frequent cause of combined hereditary deaf-blindness. USH is genetically heterogeneous with at least 11 chromosomal loci assigned to 3 clinical types, USH1-3. We have previously demonstrated that all USH1 and 2 proteins in the eye and the inner ear are organized into protein networks by scaffold proteins. This has contributed essentially to our current understanding of the function of USH proteins and explains why defects in proteins of different families cause very similar phenotypes. We have previously shown that the USH1G protein SANS (scaffold protein containing ankyrin repeat…

Scaffold proteinUsher syndromePhosphodiesterase 4D interacting protein (PDE4DIP)Muscle ProteinsPlasma protein bindingMice0302 clinical medicineYeastsChlorocebus aethiopsNuclear proteinCells CulturedGenetics0303 health scienceseducation.field_of_studyNuclear ProteinsCell biologyCOS CellssymbolsPhotoreceptor Cells VertebrateProtein BindingMicrotubule based transportNerve Tissue ProteinsBiologyModels BiologicalRetina03 medical and health sciencessymbols.namesakemedicineAnimalsHumanseducationMolecular BiologyAdaptor Proteins Signal Transducing030304 developmental biologyCell BiologyGlycostation disorders [IGMD 4]Golgi apparatusmedicine.diseaseMacaca mulattaMice Inbred C57BLCytoskeletal ProteinsPhotoreceptor cell functionMyomegalinGenetics and epigenetic pathways of disease Functional Neurogenomics [NCMLS 6]CattleAnkyrin repeatCiliary baseIntracellular transport030217 neurology & neurosurgerySensorineuronal degeneration
researchProduct

Proteomic analysis reveals a role for Bcl2-associated athanogene 3 and major vault protein in resistance to apoptosis in senescent cells by regulatin…

2014

Senescence is a prominent solid tumor response to therapy in which cells avoid apoptosis and instead enter into prolonged cell cycle arrest. We applied a quantitative proteomics screen to identify signals that lead to therapy-induced senescence and discovered that Bcl2-associated athanogene 3 (Bag3) is up-regulated after adriamycin treatment in MCF7 cells. Bag3 is a member of the BAG family of co-chaperones that interacts with Hsp70. Bag3 also regulates major cell-signaling pathways. Mass spectrometry analysis of the Bag3 Complex revealed a novel interaction between Bag3 and Major Vault Protein (MVP). Silencing of Bag3 or MVP shifts the cellular response to adriamycin to favor apoptosis. We…

SenescenceProteomicsCell cycle checkpointApoptosisBreast NeoplasmsBAG3BiochemistryAnalytical ChemistryMajor vault proteinCell Line TumorGene silencingHumansMolecular BiologyCellular SenescenceAdaptor Proteins Signal TransducingVault Ribonucleoprotein ParticlesMitogen-Activated Protein Kinase 1Antibiotics AntineoplasticMitogen-Activated Protein Kinase 3biologyResearchCell biologyApoptosisDoxorubicinbiology.proteinCancer researchSignal transductionApoptosis Regulatory ProteinsCell agingSignal TransductionMolecularcellular proteomics : MCP
researchProduct