Search results for "Transferase"
showing 10 items of 1030 documents
Somatic copy number alterations are associated with EGFR amplification and shortened survival in patients with primary glioblastoma.
2019
Glioblastoma (GBM) is the most common malignant primary tumor of the central nervous system. With no effective therapy, the prognosis for patients is terrible poor. It is highly heterogeneous and EGFR amplification is its most frequent molecular alteration. In this light, we aimed to examine the genetic heterogeneity of GBM and to correlate it with the clinical characteristics of the patients. For that purpose, we analyzed the status of EGFR and the somatic copy number alterations (CNAs) of a set of tumor suppressor genes and oncogenes. Thus, we found GBMs with high level of EGFR amplification, low level and with no EGFR amplification. Highly amplified tumors showed histological features of…
Novel multiple sclerosis susceptibility loci implicated in epigenetic regulation
2016
Genome-wide study in Germans identifies four novel multiple sclerosis risk genes and confirms already known gene loci.
Broad neurodevelopmental features and cortical anomalies associated with a novel de novo KMT2A variant in Wiedemann-Steiner syndrome.
2021
Abstract Wiedemann-Steiner syndrome (WDSTS) is a rare genetic disorder including developmental delay/intellectual disability (DD/ID), hypertrichosis cubiti, short stature, and distinctive facial features, caused by mutation in KMT2A gene, which encodes a histone methyltransferase (H3K4) that regulates chromatin-mediated transcription. Different neurodevelopmental phenotypes have been described within the WDSTS spectrum, including a peculiar Autism Spectrum Disorder (ASDs) subtype in some affected individuals. Here, we report a 9-year-old Caucasian male found by next-generation panel sequencing to carry a novel heterozygous de novo KMT2A frameshift variant (NM_001197104.2:c.4433delG; p. Arg1…
Blimp1 Prevents Methylation of Foxp3 and Loss of Regulatory T Cell Identity at Sites of Inflammation
2018
Summary Foxp3+ regulatory T (Treg) cells restrict immune pathology in inflamed tissues; however, an inflammatory environment presents a threat to Treg cell identity and function. Here, we establish a transcriptional signature of central nervous system (CNS) Treg cells that accumulate during experimental autoimmune encephalitis (EAE) and identify a pathway that maintains Treg cell function and identity during severe inflammation. This pathway is dependent on the transcriptional regulator Blimp1, which prevents downregulation of Foxp3 expression and “toxic” gain-of-function of Treg cells in the inflamed CNS. Blimp1 negatively regulates IL-6- and STAT3-dependent Dnmt3a expression and function …
Expanding the Phenotype Associated with NAA10-Related N-Terminal Acetylation Deficiency
2016
International audience; N-terminal acetylation is a common protein modification in eukaryotes associated with numerous cellular processes. Inherited mutations in NAA10, encoding the catalytic subunit of the major N-terminal acetylation complex NatA have been associated with diverse, syndromic X-linked recessive disorders, whereas de novo missense mutations have been reported in one male and one female individual with severe intellectual disability but otherwise unspecific phenotypes. Thus, the full genetic and clinical spectrum of NAA10 deficiency is yet to be delineated. We identified three different novel and one known missense mutation in NAA10, de novo in 11 females, and due to maternal…
Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738 variants on NAFLD severity: a multicenter biopsy-based study.
2016
The PNPLA3 p.I148M, TM6SF2 p.E167K, and MBOAT7 rs641738 variants represent genetic risk factors for nonalcoholic fatty liver disease (NAFLD). Here we investigate if these polymorphisms modulate both steatosis and fibrosis in patients with NAFLD. We recruited 515 patients with NAFLD (age 16–88 years, 280 female patients). Liver biopsies were performed in 320 patients. PCR-based assays were used to genotype the PNPLA3, TM6SF2, and MBOAT7 variants. Carriers of the PNPLA3 and TM6SF2 risk alleles showed increased serum aspartate aminotransferase and alanine transaminase activities (P 0.05). The MBOAT7 variant was solely associated with increased fibrosis (P = 0.046). In the multivariate model, v…
Circadian and Dopaminergic Regulation of Fatty Acid Oxidation Pathway Genes in Retina and Photoreceptor Cells.
2016
The energy metabolism of the retina might comply with daily changes in energy demand and is impaired in diabetic retinopathy-one of the most common causes of blindness in Europe and the USA. The aim of this study was to investigate putative adaptation of energy metabolism in healthy and diabetic retina. Hence expression analysis of metabolic pathway genes was performed using quantitative polymerase chain reaction, semi-quantitative western blot and immunohistochemistry. Transcriptional profiling of key enzymes of energy metabolism identified transcripts of mitochondrial fatty acid β-oxidation enzymes, i.e. carnitine palmitoyltransferase-1α (Cpt-1α) and medium chain acyl-CoA dehydrogenase (A…
Mitochondrial Fatty Acid β-Oxidation Inhibition Promotes Glucose Utilization and Protein Deposition through Energy Homeostasis Remodeling in Fish.
2020
BACKGROUND: Fish cannot use carbohydrate efficiently and instead utilize protein for energy supply, thus limiting dietary protein storage. Protein deposition is dependent on protein turnover balance, which correlates tightly with cellular energy homeostasis. Mitochondrial fatty acid β-oxidation (FAO) plays a crucial role in energy metabolism. However, the effect of remodeled energy homeostasis caused by inhibited mitochondrial FAO on protein deposition in fish has not been intensively studied. OBJECTIVES: This study aimed to identify the regulatory role of mitochondrial FAO in energy homeostasis maintenance and protein deposition by studying lipid, glucose, and protein metabolism in fish. M…
Homocysteine concentration in coronary artery disease: Influence of three common single nucleotide polymorphisms.
2017
Whether single nucleotide polymorphisms (SNPs) of homocysteine metabolism enzymes influence the rate of cardiovascular (CV) events in coronary artery disease (CAD) patients remains controversial.In this analysis, 1126 subjects from the AtheroGene study with CAD and 332 control subjects without known CAD were included. The following SNPs were investigated: methylentetrahydrofolate reductase (MTHFR-C667T), methionin synthetase (MS-D919G), and cystathionin beta synthetase (CBS-I278T). The endpoint was the combination of cardiovascular death, stroke, and non-fatal myocardial infarction (N = 286). The median follow-up time was 6.4 years. Kaplan-Meier curve analysis showed an increasing event rat…
Sequential cleavage of the proteins encoded by HNOT/ALG3, the human counterpart of the Drosophila NOT and yeast ALG3 gene, results in products acting…
2017
This study provides first insights into the biosynthesis, structure, biochemistry and complex processing of the proteins encoded by hNOT/ALG3, the human counterpart of the Drosophila Neighbour of TID (NOT) and the yeast asparagine linked glycosylation 3 gene (ALG3), which encodes a mannosyltransferase. Unambiguous evidence that both the fly and human proteins act as mannosyltransferases has not been provided yet. Previously, we showed that hNOT/ALG3 encodes two alternatively spliced main transcripts, hNOT-1/ALG3-1 and hNOT-4/ALG3-4, and their 15 truncated derivatives that lack diverse sets of exons and/or carry point mutations that result in premature termination codons. Here we show that t…