Search results for "Transferase"

showing 10 items of 1030 documents

Genomic profiling in advanced stage non-small-cell lung cancer patients with platinum-based chemotherapy identifies germline variants with prognostic…

2017

Abstract Objective The aim of the study was to investigate the relationship between germline variations as a prognosis biomarker in patients with advanced Non-Small-Cell-Lung-Cancer (NSCLC) subjected to first-line platinum-based treatment. Materials and Methods We carried out a two-stage genome-wide-association study in non-small-cell lung cancer patients with platinum-based chemotherapy in an exploratory sample of 181 NSCLC patients from Caucasian origin, followed by a validation on 356 NSCLC patients from the same ancestry (Valencia, Spain). Results We identified germline variants in SMYD2 as a prognostic factor for survival in patients with advanced NSCLC receiving chemotherapy. SMYD2 al…

0301 basic medicineOncologyMaleCancer Researchmedicine.medical_specialtyLung NeoplasmsGenotyping Techniquesmedicine.medical_treatmentGenome-wide association studyAntineoplastic AgentsDiseasemedicine.disease_causeNSCLCPrognostic factorsGenome-Wide-Association StudiesGermline03 medical and health sciencesInternal medicineCarcinoma Non-Small-Cell LungGenetic variationmedicineBiomarkers TumorHumansAlleleLung cancerGerm-Line MutationNeoplasm StagingPlatinumChemotherapyAdvanced stagebusiness.industryGenetic VariationHistone-Lysine N-Methyltransferasemedicine.diseasePrognosis030104 developmental biologyOncologySpainDisease ProgressionFemaleLung cancerCarcinogenesisbusinessGenome-Wide Association Study
researchProduct

eIF5A facilitates translation termination globally and promotes the elongation of many non polyproline-specific tripeptide sequences

2017

Abstract eIF5A is an essential protein involved in protein synthesis, cell proliferation and animal development. High eIF5A expression is observed in many tumor types and has been linked to cancer metastasis. Recent studies have shown that eIF5A facilitates the translation elongation of stretches of consecutive prolines. Activated eIF5A binds to the empty E-site of stalled ribosomes, where it is thought to interact with the peptidyl-tRNA situated at the P-site. Here, we report a genome-wide analysis of ribosome stalling in Saccharomyces cerevisiae eIF5A depleted cells using 5Pseq. We confirm that, in the absence of eIF5A, ribosomes stall at proline stretches, and extend previous studies by …

0301 basic medicinePeptidyl transferaseProlineCytoskeleton organizationAmino Acid MotifsSaccharomyces cerevisiaePeptide Chain Elongation TranslationalSaccharomyces cerevisiaeBioinformaticsRibosomeGTP Phosphohydrolases03 medical and health sciences0302 clinical medicinePeptide Initiation FactorsGene Expression Regulation FungalGeneticsProtein biosynthesisHumansMolecular BiologyPolyproline helixBinding SitesbiologyRNA-Binding Proteinsbiology.organism_classificationStop codonCell biology030104 developmental biologybiology.proteinGenome FungalHydrophobic and Hydrophilic InteractionsRibosomesEIF5A030217 neurology & neurosurgeryProtein BindingNucleic Acids Research
researchProduct

Single nucleotide polymorphisms in A4GALT spur extra products of the human Gb3/CD77 synthase and underlie the P1PK blood group system.

2018

Contrary to the mainstream blood group systems, P1PK continues to puzzle and generate controversies over its molecular background. The P1PK system comprises three glycosphingolipid antigens: Pk, P1 and NOR, all synthesised by a glycosyltransferase called Gb3/CD77 synthase. The Pk antigen is present in most individuals, whereas P1 frequency is lesser and varies regionally, thus underlying two common phenotypes: P1, if the P1 antigen is present, and P2, when P1 is absent. Null and NOR phenotypes are extremely rare. To date, several single nucleotide polymorphisms (SNPs) have been proposed to predict the P1/P2 status, but it has not been clear how important they are in general and in relation …

0301 basic medicinePhysiologyCell Membraneslcsh:MedicineArtificial Gene Amplification and ExtensionBiochemistryPolymerase Chain Reactionchemistry.chemical_compoundSpectrum Analysis TechniquesTranscription (biology)GenotypeMedicine and Health Scienceslcsh:ScienceGeneticsMultidisciplinaryGlobosidesHomozygoteGlycosphingolipidFlow CytometryGalactosyltransferasesPhenotypeLipidsBody FluidsElectrophysiologyCholesterolBloodPhenotypeSpectrophotometryBlood Group AntigensCytophotometryAnatomyCellular Structures and OrganellesResearch ArticleGenotypeSingle-nucleotide polymorphismBiologyResearch and Analysis MethodsReal-Time Polymerase Chain ReactionMembrane PotentialPolymorphism Single NucleotideAntibodiesGlycosphingolipids03 medical and health sciencesAntigenGlycosyltransferaseHumansMolecular Biology TechniquesMolecular BiologyBlood typeSphingolipidslcsh:RBiology and Life SciencesCell Biology030104 developmental biologychemistrybiology.proteinlcsh:QBlood GroupsPLoS ONE
researchProduct

Interactions between odorants and glutathione transferases in the human olfactory cleft

2020

AbstractXenobiotic metabolizing enzymes and other proteins, including odorant-binding proteins located in the nasal epithelium and mucus, participate in a series of processes modulating the concentration of odorants in the environment of olfactory receptors (ORs) and finely impact odor perception. These enzymes and transporters are thought to participate in odorant degradation or transport. Odorant biotransformation results in 1) changes in the odorant quantity up to their clearance and the termination of signaling and 2) the formation of new odorant stimuli (metabolites). Enzymes, such as cytochrome P450 and glutathione transferases (GSTs), have been proposed to participate in odorant clea…

0301 basic medicinePhysiologyOlfaction03 medical and health sciencesBehavioral NeuroscienceGSTP1chemistry.chemical_compound0302 clinical medicineOlfactory MucosaPhysiology (medical)glutathione transferasemedicine[SDV.MHEP.PHY]Life Sciences [q-bio]/Human health and pathology/Tissues and Organs [q-bio.TO]HumanshumanReceptorGSTP1odorantchemistry.chemical_classificationbiologymusculoskeletal neural and ocular physiology[SCCO.NEUR]Cognitive science/NeuroscienceCytochrome P450TransporterGlutathioneSensory Systems3. Good health030104 developmental biologymedicine.anatomical_structureEnzymeGSTA1chemistryBiochemistryOdorantsbiology.proteinOlfactory epithelium[SDV.AEN]Life Sciences [q-bio]/Food and Nutrition030217 neurology & neurosurgerypsychological phenomena and processesolfaction
researchProduct

Resveratrol shifts energy metabolism to increase lipid oxidation in healthy old mice.

2019

Abstract Objectives The objective of this work was to determine the specific mechanisms by which resveratrol inhibits lipogenesis and stimulates lipolysis. Methods Twelve male mice were individually introduced into a metabolic cage for 24 h to measure basal metabolic rate, prior to intervention. They were randomly divided into two groups, resveratrol (RSV) and control (C), and administered resveratrol intraperitoneally or vehicle, respectively, for two consecutive days. After 24 h, the metabolic energy expenditure was again determined for 24 h, before mice were sacrificed. Protein and gene expression of different enzymes related to metabolism in the hepatic tissue, adipose tissue and gastro…

0301 basic medicinePolyphenolMalemedicine.medical_specialtyAgingLipolysisAdipose tissueWhite adipose tissueRM1-950ResveratrolLipid catabolism03 medical and health scienceschemistry.chemical_compoundMice0302 clinical medicineInternal medicinemedicineAnimalsCarnitineBeta oxidationFatty acid synthesisRespiratory quotientPharmacologyLipogenesisFatty AcidsGeneral MedicineMice Inbred C57BL030104 developmental biologyEndocrinologyMalonyl-CoAchemistryAdipose TissueCarnitine AcyltransferasesLiverResveratrol030220 oncology & carcinogenesisLipogenesisTherapeutics. PharmacologyEnergy MetabolismOxidation-Reductionmedicine.drugAcetyl-CoA CarboxylaseBiomedicinepharmacotherapy = Biomedecinepharmacotherapie
researchProduct

The anti-cancer drug doxorubicin induces substantial epigenetic changes in cultured cardiomyocytes.

2019

Abstract The anthracycline doxorubicin (DOX) is widely used in cancer therapy with the limitation of cardiotoxicity leading to the development of congestive heart failure. DOX-induced oxidative stress and changes of the phosphoproteome as well as epigenome were described but the exact mechanisms of the adverse long-term effects are still elusive. Here, we tested the impact of DOX treatment on cell death, oxidative stress parameters and expression profiles of proteins involved in epigenetic pathways in a cardiomyocyte cell culture model. Markers of oxidative stress, apoptosis and expression of proteins involved in epigenetic processes were assessed by immunoblotting in cultured rat myoblasts…

0301 basic medicineProgrammed cell deathMethyltransferaseApoptosisToxicologymedicine.disease_causeHistone DeacetylasesEpigenesis GeneticHistones03 medical and health sciences0302 clinical medicinemedicineAnimalsMyocytes CardiacEpigeneticsCells CulturedHistone DemethylasesAntibiotics AntineoplasticbiologyDose-Response Relationship DrugHistone deacetylase 2ChemistryGeneral MedicineEpigenomeHydrogen PeroxideCardiotoxicityCell biologyRatsOxidative Stress030104 developmental biologyHistoneAcetylationDoxorubicin030220 oncology & carcinogenesisbiology.proteinOxidative stressBiomarkersChemico-biological interactions
researchProduct

The RNA methyltransferase Dnmt2 methylates DNA in the structural context of a tRNA

2016

The amino acid sequence of Dnmt2 is very similar to the catalytic domains of bacterial and eukaryotic DNA-(cytosine 5)-methyltransferases, but it efficiently catalyzes tRNA methylation, while its DNA methyltransferase activity is the subject of controversial reports with rates varying between zero and very weak. By using composite nucleic acid molecules as substrates, we surprisingly found that DNA fragments, when presented as covalent DNA-RNA hybrids in the structural context of a tRNA, can be more efficiently methylated than the corresponding natural tRNA substrate. Furthermore, by stepwise development of tRNAAsp, we showed that this natural Dnmt2 substrate could be engineered to employ R…

0301 basic medicineRNA methylationBiologyMethylationCytosineMiceStructure-Activity Relationship03 medical and health scienceschemistry.chemical_compoundRNA Transferenzyme kineticsAnimalsHumansDNA (Cytosine-5-)-MethyltransferasesGuide RNA5-methylcytosinetRNAMolecular Biologymodification pathway crosstalkTRNA methylationRNADNACell BiologyMethylationDNA MethylationRNA modification5-Methylcytosine030104 developmental biologyBiochemistrychemistryTransfer RNARNA methylationNucleic Acid ConformationDnmt2DNAResearch Paper
researchProduct

Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs

2017

AbstractCytosine-5 RNA methylation plays an important role in several biologically and pathologically relevant processes. However, owing to methodological limitations, the transcriptome-wide distribution of this mark has remained largely unknown. We previously established RNA bisulfite sequencing as a method for the analysis of RNA cytosine-5 methylation patterns at single-base resolution. More recently, next-generation sequencing has provided opportunities to establish transcriptome-wide maps of this modification. Here we present a computational approach that integrates tailored filtering and data-driven statistical modeling to eliminate many of the artifacts that are known to be associate…

0301 basic medicineRNA methylationBisulfite sequencingMethodComputational biologyBiologyTranscriptome03 medical and health sciencesMiceRNA modificationsRNA TransferRNA Ribosomal 28SGeneticsm5CAnimalsHumansRNA MessengerRNA Processing Post-TranscriptionalRNA-Directed DNA MethylationBisulfite sequencingGenetics (clinical)GeneticsHigh-Throughput Nucleotide SequencingRNAMethyltransferasesMethylationRibosomal RNADNA Methylation030104 developmental biologyTransfer RNADNA methylationIllumina Methylation AssayTranscriptome
researchProduct

Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation

2016

ABSTRACT A group of homologous nucleic acid modification enzymes called Dnmt2, Trdmt1, Pmt1, DnmA, and Ehmet in different model organisms catalyze the transfer of a methyl group from the cofactor S-adenosyl-methionine (SAM) to the carbon-5 of cytosine residues. Originally considered as DNA MTases, these enzymes were shown to be tRNA methyltransferases about a decade ago. Between the presumed involvement in DNA modification-related epigenetics, and the recent foray into the RNA modification field, significant progress has characterized Dnmt2-related research. Here, we review this progress in its diverse facets including molecular evolution, structural biology, biochemistry, chemical biology,…

0301 basic medicineRetroelementsRNA methylationChemical biologyReviewBiologyMethylationCatalysisEpigenesis GeneticSubstrate Specificity03 medical and health scienceschemistry.chemical_compoundStructure-Activity RelationshipNucleic AcidsAnimalsHumansEpigeneticsDNA (Cytosine-5-)-MethyltransferasesGene SilencingMolecular BiologytRNAPhylogenyGeneticsNucleic acid methylationDNA methylationBinding SitesepigeneticsCell BiologyTRNA Methyltransferasesmethylcytidine030104 developmental biologyCell Transformation NeoplasticBiochemistrychemistryStructural biologyGene Expression RegulationNucleic acidRNA methylationDNAProtein BindingRNA Biology
researchProduct

DICER- and MMSET-catalyzed H4K20me2 recruits the nucleotide excision repair factor XPA to DNA damage sites

2017

The endoribonuclease DICER facilitates chromatin decondensation during lesion recognition following UV exposure. Chitale and Richly show that DICER mediates the recruitment of the methyltransferase MMSET, which catalyzes the dimethylation of histone H4 at lysine 20 and facilitates the recruitment of the nucleotide excision repair factor XPA.

0301 basic medicineRibonuclease IIIDNA RepairDNA damageDNA repairUltraviolet Raysgenetic processes27Article24DEAD-box RNA HelicasesHistones03 medical and health sciencesCell Line TumorHumansResearch ArticlesbiologyLysinefungiEndoribonuclease Dicerfood and beverages37Cell BiologyDNA Repair PathwayHistone-Lysine N-MethyltransferaseCell biologyChromatinXeroderma Pigmentosum Group A ProteinRepressor Proteinsenzymes and coenzymes (carbohydrates)030104 developmental biologyHistoneHEK293 Cellsbiology.proteinBiocatalysisDicerNucleotide excision repairDNA DamageThe Journal of Cell Biology
researchProduct