Search results for "Trass"
showing 10 items of 23 documents
A multidimensional critical factorization theorem
2005
AbstractThe Critical Factorization Theorem is one of the principal results in combinatorics on words. It relates local periodicities of a word to its global periodicity. In this paper we give a multidimensional extension of it. More precisely, we give a new proof of the Critical Factorization Theorem, but in a weak form, where the weakness is due to the fact that we loose the tightness of the local repetition order. In exchange, we gain the possibility of extending our proof to the multidimensional case. Indeed, this new proof makes use of the Theorem of Fine and Wilf, that has several classical generalizations to the multidimensional case.
Factorization and NNLL Resummation for Higgs Production with a Jet Veto
2012
Using methods of effective field theory, we derive the first all-order factorization theorem for the Higgs-boson production cross section with a jet veto, imposed by means of a standard sequential recombination jet algorithm. Like in the case of small-q_T resummation in Drell-Yan and Higgs production, the factorization is affected by a collinear anomaly. Our analysis provides the basis for a systematic resummation of large logarithms log(m_H/p_T^veto) beyond leading-logarithmic order. Specifically, we present predictions for the resummed jet-veto cross section and efficiency at next-to-next-to-leading logarithmic order. Our results have important implications for Higgs-boson searches at the…
Factorization and resummation for jet broadening
2011
Jet broadening is an event-shape variable probing the transverse momenta of particles inside jets. It has been measured precisely in e+e- annihilations and is used to extract the strong coupling constant. The factorization of the associated cross section at small values of the broadening is afflicted by a collinear anomaly. Based on an analysis of this anomaly, we present the first all-order expressions for jet-broadening distributions, which are free of large perturbative logarithms in the two-jet limit. Our formulae reproduce known results at next-to-leading logarithmic order but also extend to higher orders.
Factorization and Momentum-Space Resummation in Deep-Inelastic Scattering
2006
Renormalization-group methods in soft-collinear effective theory are used to perform the resummation of large perturbative logarithms for deep-inelastic scattering in the threshold region x->1. The factorization theorem for the structure function F_2(x,Q^2) for x->1 is rederived in the effective theory, whereby contributions from the hard scale Q^2 and the jet scale Q^2(1-x) are encoded in Wilson coefficients of effective-theory operators. Resummation is achieved by solving the evolution equations for these operators. Simple analytic results for the resummed expressions are obtained directly in momentum space, and are free of the Landau-pole singularities inherent to the traditional m…
The Complete Two-Loop Integrated Jet Thrust Distribution In Soft-Collinear Effective Theory
2013
In this work, we complete the calculation of the soft part of the two-loop integrated jet thrust distribution in e+e- annihilation. This jet mass observable is based on the thrust cone jet algorithm, which involves a veto scale for out-of-jet radiation. The previously uncomputed part of our result depends in a complicated way on the jet cone size, r, and at intermediate stages of the calculation we actually encounter a new class of multiple polylogarithms. We employ an extension of the coproduct calculus to systematically exploit functional relations and represent our results concisely. In contrast to the individual contributions, the sum of all global terms can be expressed in terms of cla…
Automated NNLL+NLO Resummation for Jet-Veto Cross Sections
2014
In electroweak-boson production processes with a jet veto, higher-order corrections are enhanced by logarithms of the veto scale over the invariant mass of the boson system. In this paper, we resum these Sudakov logarithms at next-to-next-to-leading logarithmic (NNLL) accuracy and match our predictions to next-to-leading order (NLO) fixed-order results. We perform the calculation in an automated way, for arbitrary electroweak final states and in the presence of kinematic cuts on the leptons produced in the decays of the electroweak bosons. The resummation is based on a factorization theorem for the cross sections into hard functions, which encode the virtual corrections to the boson product…
Evolution of the $B$-Meson Light-Cone Distribution Amplitude in Laplace Space
2020
The $B$-meson light-cone distribution amplitude is a central quantity governing non-perturbative hadronic dynamics in exclusive $B$ decays. We show that the information needed to describe such processes at leading power in $\Lambda_{\rm QCD}/m_b$ is most directly contained in its Laplace transform $\tilde\phi_+(\eta)$. We derive the renormalization-group (RG) equation satisfied by this function and present its exact solution. We express the RG-improved QCD factorization theorem for the decay $B^-\to\gamma\ell^-\bar\nu$ in terms of $\tilde\phi_+(\eta)$ and show that it is explicitly independent of the factorization scale. We propose an unbiased parameterization of $\tilde\phi_+(\eta)$ in ter…
The present status of the EPS nuclear PDFs
2010
The recent global analyses of the nuclear parton distribution functions (nPDFs) lend support to the validity of the factorization theorem of QCD in high-energy processes involving bound nucleons. With a special attention on our latest global analysis EPS09, we review the recent developements in the domain of nuclear PDFs.
Renormalization and Scale Evolution of the Soft-Quark Soft Function
2020
Soft functions defined in terms of matrix elements of soft fields dressed by Wilson lines are central components of factorization theorems for cross sections and decay rates in collider and heavy-quark physics. While in many cases the relevant soft functions are defined in terms of gluon operators, at subleading order in power counting soft functions containing quark fields appear. We present a detailed discussion of the properties of the soft-quark soft function consisting of a quark propagator dressed by two finite-length Wilson lines connecting at one point. This function enters in the factorization theorem for the Higgs-boson decay amplitude of the $h\to\gamma\gamma$ process mediated by…
Conditional convex orders and measurable martingale couplings
2014
Strassen's classical martingale coupling theorem states that two real-valued random variables are ordered in the convex (resp.\ increasing convex) stochastic order if and only if they admit a martingale (resp.\ submartingale) coupling. By analyzing topological properties of spaces of probability measures equipped with a Wasserstein metric and applying a measurable selection theorem, we prove a conditional version of this result for real-valued random variables conditioned on a random element taking values in a general measurable space. We also provide an analogue of the conditional martingale coupling theorem in the language of probability kernels and illustrate how this result can be appli…