Search results for "Tunneling"
showing 10 items of 182 documents
Superconductivity near a magnetic domain wall
2018
We study the equilibrium properties of a ferromagnetic insulator/superconductor structure near a magnetic domain wall. We show how the domain wall size is affected by the superconductivity in such structures. Moreover, we calculate several physical quantities altered due to the magnetic domain wall, such as the spin current density and local density of states, as well as the resulting tunneling conductance into a structure with a magnetic domain wall.
Morphological and magnetic analysis of Fe nanostructures on W(110) by using scanning tunneling microscopy and Lorentz microscopy
2016
Abstract We investigated morphological features and magnetic properties of epitaxial Fe nanostructures (films, stripes and nanoparticles) on a W(110) surface with monoatomic steps preferentially along the direction. The nanostructures were prepared in ultra-high vacuum by using electron-beam evaporation and subsequent annealing at different temperatures. Scanning tunneling microscopy measurements in-situ revealed elongated Fe nanostructures with aspect ratios of up to . The observable shape and orientation (along or perpendicular to the monoatomic steps of the substrate) of the nanostructures depended substantially on the preparation parameters. By capping the system with 7 monolayers of Pt…
Simplified feedback control system for scanning tunneling microscopy
2021
A Scanning Tunneling Microscope (STM) is one of the most important scanning probe tools available to study and manipulate matter at the nanoscale. In a STM, a tip is scanned on top of a surface with a separation of a few \AA. Often, the tunneling current between tip and sample is maintained constant by modifying the distance between the tip apex and the surface through a feedback mechanism acting on a piezoelectric transducer. This produces very detailed images of the electronic properties of the surface. The feedback mechanism is nearly always made using a digital processing circuit separate from the user computer. Here we discuss another approach, using a computer and data acquisition thr…
Laser-induced enhancement of tunneling in NHD2
2012
We apply and explore techniques aiming at enhancing the tunneling by laser fields, originally developed for a one-dimensional model, to a complete six-dimensional vibrational model of the inversion motion in NHD(2). The computational study is performed with the multi-configuration time-dependent Hartree method. Assuming an ideal three-dimensional alignment we obtain a driven tunneling time twenty times smaller than the natural one, in rather good agreement with an oversimplified three-state model. In the case of one-dimensional alignment, a linearly polarized field leads to a poor enhancement of the tunneling probability, after averaging over the rotation about the alignment axis, whereas a…
Gold/Isophorone Interaction Driven by Keto/Enol Tautomerization
2016
The binding behavior of isophorone (C9H14O) to Au adatoms and clusters deposited on MgO/Ag(001) thin films is investigated by scanning tunneling microscopy (STM) and density functional theory (DFT). The STM data reveal the formation of various metal/organic complexes, ranging from Au1/isophorone pairs to larger Au aggregates with molecules bound to their perimeter. DFT calculations find the energetically preferred keto-isophorone to be unreactive toward gold, while the enol-tautomer readily binds to Au monomers and clusters. The interaction is governed by electrostatic forces between the hydroxyl group of the enol and negative excess charges residing on the ad-gold. The activation barrier b…
Study of the electronic and atomic structure of thermally treated SrTiO3(110) surfaces
2003
The electronic structure of heated SrTiO3(110) surfaces was investigated with metastable impact electron spectroscopy and ultraviolet photoelectron spectroscopy (He(I). Scanning tunnelling microscopy and atomic force microscopy (AFM) were used to study the topology of the surface. The crystals were heated up to 1000 °C under reducing conditions in ultrahigh vacuum or under oxidizing conditions in synthetic air for 1 h, respectively. Under both conditions microfacetting of the surface is observed. The experimental results are compared with ab initio Hartree-Fock calculations, also presented here, carried out for both ideal and reconstructed SrTiO 3(110) surfaces. The results give direct evid…
Excess Electrons at Oxide Surfaces
2015
Excess electrons profoundly affect the properties of oxide surfaces. The present review deals with excess charges on rutile and anatase. These much studied titania polymorphs open with strong prospects regarding (photo)catalysis and dye-sensitized solar cells. In the complex landscape of the mechanisms of electron trapping and electron transfer toward adsorbates, excess electrons open with flexible model systems which are the focus of an extensive research effort.
Lateral Fusion of Chemical Vapor Deposited N = 5 Armchair Graphene Nanoribbons
2017
Bottom-up synthesis of low-bandgap graphene nanoribbons with various widths is of great importance for their applications in electronic and optoelectronic devices. Here we demonstrate a synthesis of N = 5 armchair graphene nanoribbons (5-AGNRs) and their lateral fusion into wider AGNRs, by a chemical vapor deposition method. The efficient formation of 10- and 15- AGNRs is revealed by a combination of different spectroscopic methods, including Raman and UV−visnear-infrared spectroscopy as well as by scanning tunneling microscopy. The degree of fusion and thus the optical and electronic properties of the resulting GNRs can be controlled by the annealing temperature, providing GNR films with o…
On-surface Synthesis of a Chiral Graphene Nanoribbon with Mixed Edge Structure.
2020
Abstract Chiral graphene nanoribbons represent an important class of graphene nanomaterials with varying combinations of armchair and zigzag edges conferring them unique structure‐dependent electronic properties. Here, we describe the on‐surface synthesis of an unprecedented cove‐edge chiral GNR with a benzo‐fused backbone on a Au(111) surface using 2,6‐dibromo‐1,5‐diphenylnaphthalene as precursor. The initial precursor self‐assembly and the formation of the chiral GNRs upon annealing are revealed, along with a relatively small electronic bandgap of approximately 1.6 eV, by scanning tunnelling microscopy and spectroscopy.
Unraveling In vivo brain transport of protein‐coated fluorescent nanodiamonds
2019
The blood–brain barrier is the biggest hurdle to overcome for the treatment of neurological disorders. Here, protein‐coated nanodiamonds are delivered to the brain and taken up by neurovascular unit cells after intravenous injection. Thus, for the first time, nanodiamonds with their unique properties and a flexible protein coating for the attachment of therapeutics emerge as a potential platform for nanotheranostics of neurological disorders.Nanotheranostics, combining diagnostics and therapy, has the potential to revolutionize treatment of neurological disorders. But one of the major obstacles for treating central nervous system diseases is the blood–brain barrier (BBB) preventing systemic…