Search results for "Universal Algebra"
showing 10 items of 93 documents
On the Oort conjecture for Shimura varieties of unitary and orthogonal types
2014
In this paper we study the Oort conjecture on Shimura subvarieties contained generically in the Torelli locus in the Siegel modular variety $\mathcal{A}_g$. Using the poly-stability of Higgs bundles on curves and the slope inequality of Xiao on fibred surfaces, we show that a Shimura curve $C$ is not contained generically in the Torelli locus if its canonical Higgs bundles contains a unitary Higgs subbundle of rank at least $(4g+2)/5$. From this we prove that a Shimura subvariety of $\mathbf{SU}(n,1)$-type is not contained generically in the Torelli locus when a numerical inequality holds, which involves the genus $g$, the dimension $n+1$, the degree $2d$ of CM field of the Hermitian space,…
Formations of finite monoids and formal languages: Eilenberg’s variety theorem revisited
2014
International audience; We present an extension of Eilenberg's variety theorem, a well-known result connecting algebra to formal languages. We prove that there is a bijective correspondence between formations of finite monoids and certain classes of languages, the formations of languages. Our result permits to treat classes of finite monoids which are not necessarily closed under taking submonoids, contrary to the original theory. We also prove a similar result for ordered monoids.; Nous présentons une extension du théorème des variétés d'Eilenberg, un résultat célèbre reliant l'algèbre à la théorie des langages formels. Nous montrons qu'il existe une correspondance bijective entre les form…
Topologically complex molecules obtained by transition metal templation: it is the presentation that determines the synthesis strategy
2013
Topological constructions made from closed curves range from simple links to intricate knots and started to capture the chemists' attention in the early sixties. These mathematical objects result from particular embeddings of a single or a set of closed curves in the three-dimensional space that show an infinite variety of presentations. Simple catenanes, higher order interlocked macrocycles, and molecular knots can be synthesized via the metal template approach, just as simple macrocycles. However, this requires that rigid presentations with appropriate geometrical characteristics be identified prior to molecular design, and those selected for the metal-templated synthesis of some of these…
Elementary symmetric functions of two solvents of a quadratic matrix equations
2008
Quadratic matrix equations occur in a variety of applications. In this paper we introduce new permutationally invariant functions of two solvents of the n quadratic matrix equation X^2- L1X - L0 = 0, playing the role of the two elementary symmetric functions of the two roots of a quadratic scalar equation. Our results rely on the connection existing between the QME and the theory of linear second order difference equations with noncommutative coefficients. An application of our results to a simple physical problem is briefly discussed.
AUTOMORPHISMS OF THE ENDOMORPHISM SEMIGROUP OF A FREE ASSOCIATIVE ALGEBRA
2007
Let [Formula: see text] be the variety of associative algebras over a field K and A = K 〈x1,…, xn〉 be a free associative algebra in the variety [Formula: see text] freely generated by a set X = {x1,…, xn}, End A the semigroup of endomorphisms of A, and Aut End A the group of automorphisms of the semigroup End A. We prove that the group Aut End A is generated by semi-inner and mirror automorphisms of End A. A similar result is obtained for the automorphism group Aut [Formula: see text], where [Formula: see text] is the subcategory of finitely generated free algebras of the variety [Formula: see text]. The later result solves Problem 3.9 formulated in [17].
Jeu de taquin and diamond cone for Lie (super)algebras
2015
Abstract In this paper, we recall combinatorial basis for shape and reduced shape algebras of the Lie algebras gl ( n ) , sp ( 2 n ) and so ( 2 n + 1 ) . They are given by semistandard and quasistandard tableaux. Then we generalize these constructions to the case of the Lie superalgebra spo ( 2 n , 2 m + 1 ) . The main tool is an extension of Schutzenberger's jeu de taquin to these algebras.
Sobriety and spatiality in varieties of algebras
2008
The paper considers a generalization of the classical Papert-Papert-Isbell adjunction between the categories of topological spaces and locales to an arbitrary variety of algebras and illustrates the obtained results by the category of algebras over a given unital commutative quantale.
Differential identities, 2 × 2 upper triangular matrices and varieties of almost polynomial growth
2019
Abstract We study the differential identities of the algebra U T 2 of 2 × 2 upper triangular matrices over a field of characteristic zero. We let the Lie algebra L = Der ( U T 2 ) of derivations of U T 2 (and its universal enveloping algebra) act on it. We study the space of multilinear differential identities in n variables as a module for the symmetric group S n and we determine the decomposition of the corresponding character into irreducibles. If V is the variety of differential algebras generated by U T 2 , we prove that unlike the other cases (ordinary identities, group graded identities) V does not have almost polynomial growth. Nevertheless we exhibit a subvariety U of V having almo…
Specht property for some varieties of Jordan algebras of almost polynomial growth
2019
Abstract Let F be a field of characteristic zero. In [25] it was proved that U J 2 , the Jordan algebra of 2 × 2 upper triangular matrices, can be endowed up to isomorphism with either the trivial grading or three distinct non-trivial Z 2 -gradings or by a Z 2 × Z 2 -grading. In this paper we prove that the variety of Jordan algebras generated by U J 2 endowed with any G-grading has the Specht property, i.e., every T G -ideal containing the graded identities of U J 2 is finitely based. Moreover, we prove an analogue result about the ordinary identities of A 1 , a suitable infinitely generated metabelian Jordan algebra defined in [27] .
Polynomial identities for the Jordan algebra of upper triangular matrices of order 2
2012
Abstract The associative algebras U T n ( K ) of the upper triangular matrices of order n play an important role in PI theory. Recently it was suggested that the Jordan algebra U J 2 ( K ) obtained by U T 2 ( K ) has an extremal behaviour with respect to its codimension growth. In this paper we study the polynomial identities of U J 2 ( K ) . We describe a basis of the identities of U J 2 ( K ) when the field K is infinite and of characteristic different from 2 and from 3. Moreover we give a description of all possible gradings on U J 2 ( K ) by the cyclic group Z 2 of order 2, and in each of the three gradings we find bases of the corresponding graded identities. Note that in the graded ca…