Search results for "Upervised learning"

showing 10 items of 87 documents

Evaluation of a Support Vector Machine Based Method for Crohn’s Disease Classification

2019

Crohn’s disease (CD) is a chronic, disabling inflammatory bowel disease that affects millions of people worldwide. CD diagnosis is a challenging issue that involves a combination of radiological, endoscopic, histological, and laboratory investigations. Medical imaging plays an important role in the clinical evaluation of CD. Enterography magnetic resonance imaging (E-MRI) has been proven to be a useful diagnostic tool for disease activity assessment. However, the manual classification process by expert radiologists is time-consuming and expensive. This paper proposes the evaluation of an automatic Support Vector Machine (SVM) based supervised learning method for CD classification. A real E-…

Crohn's diseasemedicine.diagnostic_testComputer sciencebusiness.industryFeature vectorFeature extractionSupervised learningMagnetic resonance imagingPattern recognitionmedicine.diseaseCrohn’s disease classification Feature extraction Feature reduction K-fold cross-validation Supervised learning Support vector machinesSupport vector machinemedicineMedical imagingArtificial intelligencebusinessReliability (statistics)
researchProduct

Dimensionality Reduction Techniques: An Operational Comparison On Multispectral Satellite Images Using Unsupervised Clustering

2006

Multispectral satellite imagery provides us with useful but redundant datasets. Using Dimensionality Reduction (DR) algorithms, these datasets can be made easier to explore and to use. We present in this study an objective comparison of five DR methods, by evaluating their capacity to provide a usable input to the K-means clustering algorithm. We also suggest a method to automatically find a suitable number of classes K, using objective "cluster validity indexes" over a range of values for K. Ten Landsat images have been processed, yielding a classification rate in the 70-80% range. Our results also show that classical linear methods, though slightly outperformed by more recent nonlinear al…

Data processingContextual image classificationPixelbusiness.industryComputer scienceDimensionality reductionMultispectral imagek-means clusteringUnsupervised learningPattern recognitionArtificial intelligencebusinessCluster analysisProceedings of the 7th Nordic Signal Processing Symposium - NORSIG 2006
researchProduct

Local dimensionality reduction and supervised learning within natural clusters for biomedical data analysis

2006

Inductive learning systems were successfully applied in a number of medical domains. Nevertheless, the effective use of these systems often requires data preprocessing before applying a learning algorithm. This is especially important for multidimensional heterogeneous data presented by a large number of features of different types. Dimensionality reduction (DR) is one commonly applied approach. The goal of this paper is to study the impact of natural clustering--clustering according to expert domain knowledge--on DR for supervised learning (SL) in the area of antibiotic resistance. We compare several data-mining strategies that apply DR by means of feature extraction or feature selection w…

Databases FactualComputer scienceFeature extractionInformation Storage and RetrievalFeature selectionMachine learningcomputer.software_genreModels BiologicalPattern Recognition AutomatedImmune systemArtificial IntelligenceDrug Resistance BacterialCluster AnalysisHumansComputer SimulationElectrical and Electronic EngineeringRepresentation (mathematics)Cluster analysisCross Infectionbusiness.industryDimensionality reductionSupervised learningGeneral MedicineAnti-Bacterial AgentsComputer Science ApplicationsData pre-processingData miningArtificial intelligenceMultidimensional systemsbusinesscomputerAlgorithmsBiotechnology
researchProduct

Detection of H. pylori induced gastric inflammation by diffuse reflectance analysis

2018

International audience; Spectral acquisitions contain rich information and thus, are promising modalities for early detection of gastric diseases. In this study, we analyze the diffuse reflectance of the gastric inflammatory lesions induced by the bacterium H. pylori in the mouse stomach. A pipeline has been designed to characterize and classify spectra acquired on mice. The pipeline is based on a band clustering algorithm followed by the computation of meaningful division and subtraction features and by classification with a linear SVM classifier. Currently, the pipeline is able to recognize inflamed stomachs spectra with an accuracy of 98%. These results are promising and the same pipelin…

Diffuse Reflectance Analysis[INFO.INFO-CV] Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]ComputingMethodologies_PATTERNRECOGNITIONHelicobacter pylori[INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing[INFO.INFO-TS] Computer Science [cs]/Signal and Image Processingdigestive oral and skin physiology[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]Inflammatory lesionsGastric DiseasesSupervised Learning
researchProduct

Eigenexpressions: Emotion Recognition Using Multiple Eigenspaces

2013

This paper presents an appearance-based holistic method for expression recognition. A two stage supervised learning approach is used. At the first stage, training images are used to compute one subspace per expression. At the second stage, the same images are used to train a classifier. In this step, Euclidean distances from each image to each particular subspace are used as the input to the classifier. The resulting system significantly outperforms the baseline eigenfaces method on the Cohn-Kanade data set, with performance gains in the range 10%-20%.

EigenfaceFacial expression recognitionbusiness.industryComputer scienceEuclidean geometrySupervised learningComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISIONPattern recognitionArtificial intelligenceEmotion recognitionbusinessClassifier (UML)Subspace topology
researchProduct

A Data-Driven Approach to Dynamically Learn Focused Lexicons for Recognizing Emotions in Social Network Streams

2016

Opinion Mining aims at identifying and classifying subjective information in a collection of documents. A variety of approach exists in literature, ranging from Supervised Learning to Unsupervised Learning. Currently, one of the biggest opinion resource of opinionated texts existing on the Web is represented by Social Networks. Networks are not only a vast collection of documents but they also represent a dynamic evolving resource as the users keep posting their own opinions. We based our work relying on this idea of dynamicity, building an evolving model that updates itself in real time as users submit their posts. This is done through a set of supervised techniques based on a Lexi- con of…

Emotion AnalysisSocial networkbusiness.industrymedia_common.quotation_subjectSentiment analysisSupervised learningDynamic web pageWorld Wide WebSadnessSurpriseResource (project management)Social NetworksUnsupervised learningData-driven modelsArtificial intelligencebusinessPsychologymedia_common
researchProduct

Using the Tsetlin Machine to Learn Human-Interpretable Rules for High-Accuracy Text Categorization With Medical Applications

2019

Medical applications challenge today's text categorization techniques by demanding both high accuracy and ease-of-interpretation. Although deep learning has provided a leap ahead in accuracy, this leap comes at the sacrifice of interpretability. To address this accuracy-interpretability challenge, we here introduce, for the first time, a text categorization approach that leverages the recently introduced Tsetlin Machine. In all brevity, we represent the terms of a text as propositional variables. From these, we capture categories using simple propositional formulae, such as: if "rash" and "reaction" and "penicillin" then Allergy. The Tsetlin Machine learns these formulae from a labelled tex…

FOS: Computer and information sciencesComputer Science - Machine LearningGeneral Computer ScienceComputer sciencetext categorizationNatural language understandingDecision treeMachine Learning (stat.ML)02 engineering and technologyVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550::Annen informasjonsteknologi: 559Machine learningcomputer.software_genresupervised learningMachine Learning (cs.LG)Naive Bayes classifierText miningStatistics - Machine Learning0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceTsetlin machinehealth informaticsInterpretabilityPropositional variableClassification algorithmsArtificial neural networkbusiness.industryDeep learning020208 electrical & electronic engineeringGeneral EngineeringRandom forestSupport vector machinemachine learningCategorization020201 artificial intelligence & image processingArtificial intelligencelcsh:Electrical engineering. Electronics. Nuclear engineeringbusinessPrecision and recallcomputerlcsh:TK1-9971
researchProduct

Expert Q-learning: Deep Reinforcement Learning with Coarse State Values from Offline Expert Examples

2022

In this article, we propose a novel algorithm for deep reinforcement learning named Expert Q-learning. Expert Q-learning is inspired by Dueling Q-learning and aims at incorporating semi-supervised learning into reinforcement learning through splitting Q-values into state values and action advantages. We require that an offline expert assesses the value of a state in a coarse manner using three discrete values. An expert network is designed in addition to the Q-network, which updates each time following the regular offline minibatch update whenever the expert example buffer is not empty. Using the board game Othello, we compare our algorithm with the baseline Q-learning algorithm, which is a…

FOS: Computer and information sciencesImitation LearningComputer Science - Machine LearningArtificial Intelligence (cs.AI)Deep LearningComputer Science - Artificial IntelligenceSemi-supervised LearningGeneral MedicineVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Reinforcement LearningMachine Learning (cs.LG)
researchProduct

Weakly Supervised Object Detection in Artworks

2018

We propose a method for the weakly supervised detection of objects in paintings. At training time, only image-level annotations are needed. This, combined with the efficiency of our multiple-instance learning method, enables one to learn new classes on-the-fly from globally annotated databases, avoiding the tedious task of manually marking objects. We show on several databases that dropping the instance-level annotations only yields mild performance losses. We also introduce a new database, IconArt, on which we perform detection experiments on classes that could not be learned on photographs, such as Jesus Child or Saint Sebastian. To the best of our knowledge, these are the first experimen…

FOS: Computer and information sciencesInformation retrievalComputer scienceComputer Vision and Pattern Recognition (cs.CV)Computer Science - Computer Vision and Pattern Recognition[INFO.INFO-CV]Computer Science [cs]/Computer Vision and Pattern Recognition [cs.CV]020207 software engineering02 engineering and technologyObject detectionTask (project management)Art HistoryDeep LearningWeakly Supervised Learning0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processing
researchProduct

At Your Service: Coffee Beans Recommendation From a Robot Assistant

2020

With advances in the field of machine learning, precisely algorithms for recommendation systems, robot assistants are envisioned to become more present in the hospitality industry. Additionally, the COVID-19 pandemic has also highlighted the need to have more service robots in our everyday lives, to minimise the risk of human to-human transmission. One such example would be coffee shops, which have become intrinsic to our everyday lives. However, serving an excellent cup of coffee is not a trivial feat as a coffee blend typically comprises rich aromas, indulgent and unique flavours and a lingering aftertaste. Our work addresses this by proposing a computational model which recommends optima…

FOS: Computer and information sciencesService (systems architecture)business.industryComputer scienceFeature vectorSupervised learningComputer Science - Human-Computer InteractionComputingMilieux_PERSONALCOMPUTING02 engineering and technologyRecommender systemMachine learningcomputer.software_genreField (computer science)GeneralLiterature_MISCELLANEOUSComputer Science - Information RetrievalPersonalizationHuman-Computer Interaction (cs.HC)0202 electrical engineering electronic engineering information engineeringRobotUnsupervised learning020201 artificial intelligence & image processingArtificial intelligencebusinesscomputerInformation Retrieval (cs.IR)
researchProduct