Search results for "Upervised learning"
showing 10 items of 87 documents
Evaluation of a Support Vector Machine Based Method for Crohn’s Disease Classification
2019
Crohn’s disease (CD) is a chronic, disabling inflammatory bowel disease that affects millions of people worldwide. CD diagnosis is a challenging issue that involves a combination of radiological, endoscopic, histological, and laboratory investigations. Medical imaging plays an important role in the clinical evaluation of CD. Enterography magnetic resonance imaging (E-MRI) has been proven to be a useful diagnostic tool for disease activity assessment. However, the manual classification process by expert radiologists is time-consuming and expensive. This paper proposes the evaluation of an automatic Support Vector Machine (SVM) based supervised learning method for CD classification. A real E-…
Dimensionality Reduction Techniques: An Operational Comparison On Multispectral Satellite Images Using Unsupervised Clustering
2006
Multispectral satellite imagery provides us with useful but redundant datasets. Using Dimensionality Reduction (DR) algorithms, these datasets can be made easier to explore and to use. We present in this study an objective comparison of five DR methods, by evaluating their capacity to provide a usable input to the K-means clustering algorithm. We also suggest a method to automatically find a suitable number of classes K, using objective "cluster validity indexes" over a range of values for K. Ten Landsat images have been processed, yielding a classification rate in the 70-80% range. Our results also show that classical linear methods, though slightly outperformed by more recent nonlinear al…
Local dimensionality reduction and supervised learning within natural clusters for biomedical data analysis
2006
Inductive learning systems were successfully applied in a number of medical domains. Nevertheless, the effective use of these systems often requires data preprocessing before applying a learning algorithm. This is especially important for multidimensional heterogeneous data presented by a large number of features of different types. Dimensionality reduction (DR) is one commonly applied approach. The goal of this paper is to study the impact of natural clustering--clustering according to expert domain knowledge--on DR for supervised learning (SL) in the area of antibiotic resistance. We compare several data-mining strategies that apply DR by means of feature extraction or feature selection w…
Detection of H. pylori induced gastric inflammation by diffuse reflectance analysis
2018
International audience; Spectral acquisitions contain rich information and thus, are promising modalities for early detection of gastric diseases. In this study, we analyze the diffuse reflectance of the gastric inflammatory lesions induced by the bacterium H. pylori in the mouse stomach. A pipeline has been designed to characterize and classify spectra acquired on mice. The pipeline is based on a band clustering algorithm followed by the computation of meaningful division and subtraction features and by classification with a linear SVM classifier. Currently, the pipeline is able to recognize inflamed stomachs spectra with an accuracy of 98%. These results are promising and the same pipelin…
Eigenexpressions: Emotion Recognition Using Multiple Eigenspaces
2013
This paper presents an appearance-based holistic method for expression recognition. A two stage supervised learning approach is used. At the first stage, training images are used to compute one subspace per expression. At the second stage, the same images are used to train a classifier. In this step, Euclidean distances from each image to each particular subspace are used as the input to the classifier. The resulting system significantly outperforms the baseline eigenfaces method on the Cohn-Kanade data set, with performance gains in the range 10%-20%.
A Data-Driven Approach to Dynamically Learn Focused Lexicons for Recognizing Emotions in Social Network Streams
2016
Opinion Mining aims at identifying and classifying subjective information in a collection of documents. A variety of approach exists in literature, ranging from Supervised Learning to Unsupervised Learning. Currently, one of the biggest opinion resource of opinionated texts existing on the Web is represented by Social Networks. Networks are not only a vast collection of documents but they also represent a dynamic evolving resource as the users keep posting their own opinions. We based our work relying on this idea of dynamicity, building an evolving model that updates itself in real time as users submit their posts. This is done through a set of supervised techniques based on a Lexi- con of…
Using the Tsetlin Machine to Learn Human-Interpretable Rules for High-Accuracy Text Categorization With Medical Applications
2019
Medical applications challenge today's text categorization techniques by demanding both high accuracy and ease-of-interpretation. Although deep learning has provided a leap ahead in accuracy, this leap comes at the sacrifice of interpretability. To address this accuracy-interpretability challenge, we here introduce, for the first time, a text categorization approach that leverages the recently introduced Tsetlin Machine. In all brevity, we represent the terms of a text as propositional variables. From these, we capture categories using simple propositional formulae, such as: if "rash" and "reaction" and "penicillin" then Allergy. The Tsetlin Machine learns these formulae from a labelled tex…
Expert Q-learning: Deep Reinforcement Learning with Coarse State Values from Offline Expert Examples
2022
In this article, we propose a novel algorithm for deep reinforcement learning named Expert Q-learning. Expert Q-learning is inspired by Dueling Q-learning and aims at incorporating semi-supervised learning into reinforcement learning through splitting Q-values into state values and action advantages. We require that an offline expert assesses the value of a state in a coarse manner using three discrete values. An expert network is designed in addition to the Q-network, which updates each time following the regular offline minibatch update whenever the expert example buffer is not empty. Using the board game Othello, we compare our algorithm with the baseline Q-learning algorithm, which is a…
Weakly Supervised Object Detection in Artworks
2018
We propose a method for the weakly supervised detection of objects in paintings. At training time, only image-level annotations are needed. This, combined with the efficiency of our multiple-instance learning method, enables one to learn new classes on-the-fly from globally annotated databases, avoiding the tedious task of manually marking objects. We show on several databases that dropping the instance-level annotations only yields mild performance losses. We also introduce a new database, IconArt, on which we perform detection experiments on classes that could not be learned on photographs, such as Jesus Child or Saint Sebastian. To the best of our knowledge, these are the first experimen…
At Your Service: Coffee Beans Recommendation From a Robot Assistant
2020
With advances in the field of machine learning, precisely algorithms for recommendation systems, robot assistants are envisioned to become more present in the hospitality industry. Additionally, the COVID-19 pandemic has also highlighted the need to have more service robots in our everyday lives, to minimise the risk of human to-human transmission. One such example would be coffee shops, which have become intrinsic to our everyday lives. However, serving an excellent cup of coffee is not a trivial feat as a coffee blend typically comprises rich aromas, indulgent and unique flavours and a lingering aftertaste. Our work addresses this by proposing a computational model which recommends optima…