Search results for "VS."

showing 10 items of 1506 documents

Tetragonal tungsten bronze compounds: relaxor versus mixed ferroelectric-dipole glass behavior.

2011

We demonstrate that recent experimental data (E. Castel et al J.Phys. Cond. Mat. {\bf 21} (2009), 452201) on tungsten bronze compound (TBC) Ba$_2$Pr$_x$Nd$_{1-x}$FeNb$_4$O$_{15}$ can be well explained in our model predicting a crossover from ferroelectric ($x=0$) to orientational (dipole) glass ($x=1$), rather then relaxor, behavior. We show, that since a "classical" perovskite relaxor like Pb(Mn$_{1/3}$ Nb$_{2/3}$)O$_3$ is never a ferroelectric, the presence of ferroelectric hysteresis loops in TBC shows that this substance actually transits from ferroelectric to orientational glass phase with $x$ growth. To describe the above crossover theoretically, we use the simple replica-symmetric so…

Condensed Matter - Materials ScienceMaterials scienceCondensed matter physicschemistry.chemical_elementMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksTungstenCondensed Matter PhysicsFerroelectricityTetragonal crystal systemchemistryPhase (matter)General Materials ScienceIsing modelOrientational glassPerovskite (structure)Phase diagramJournal of physics. Condensed matter : an Institute of Physics journal
researchProduct

Manifestation of dipole-induced disorder in self-assembly of ferroelectric and ferromagnetic nanocubes

2019

The authors thank Marjeta Maˇcek Kržmanc for many useful discussions. The financial support of M-ERA.NET Project Har-vEnPiez (Innovative nano-materials and architectures for integrated piezoelectric energy harvesting applications) is gratefully acknowledged. D.Z. acknowledges the support of the postdoctoral research program at the University of Latvia (Project No. 1.1.1.2/VIAA/1/16/072). The computing time of the LASC cluster was provided by the Institute of Solid State Physics (ISSP).

Condensed Matter - Materials ScienceMaterials scienceSuperlatticeMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesFerroelectricity0104 chemical sciencesDipoleNanocrystalFerromagnetismChemical physics:NATURAL SCIENCES:Physics [Research Subject Categories]General Materials ScienceSelf-assembly0210 nano-technologyPolarization (electrochemistry)Perovskite (structure)
researchProduct

Electronic structure of two crystallographic forms ofBaRuO3

2000

Electronic structure calculations have been performed to explain the difference in the electronic properties of two crystallographic forms of ${\mathrm{BaRuO}}_{3}.$ The calculations can explain the qualitatively different resistivities of isoelectronic $4H$- and $9R$-${\mathrm{BaRuO}}_{3}$ below 100 K. The difference in symmetry between the hexagonal four-layer ${\mathrm{BaRuO}}_{3}$ and the rhombohedral nine-layer compound allows the formation of a gap for the later. The electronic structure of these hexagonal perovskites is compared with the more familiar cubic perovskite ${\mathrm{CaRuO}}_{3}.$

Condensed Matter::Materials ScienceCrystallographyMaterials scienceHexagonal crystal systemCondensed Matter::Strongly Correlated ElectronsElectronic structureTrigonal crystal systemSymmetry (geometry)Perovskite (structure)Electronic propertiesPhysical Review B
researchProduct

Calculations of radiation-induced point defects, polarons and excitons in ferroelectric perovskites

2002

Abstract We review results of our recent large-scale computer simulations of radiation-induced point defects, excitons and polarons in ABO3 perovskite crystals, focusing mostly on KNbO3 and KTaO3 as representative examples. We have calculated the atomic and electronic structure of defects, their optical absorption, defect-induced electron density redistribution, and activation energies for defect migration. The majority of our results were obtained using the quantum-chemical method of the intermediate neglect of differential overlap (INDO) based on the Hartree–Fock formalism, as well as the shell model (SM). The main findings are compared with those obtained by means of ab initio density fu…

Condensed Matter::Materials ScienceNuclear and High Energy PhysicsElectron densityCondensed matter physicsChemistryExcitonAb initioDensity functional theoryElectronic structurePolaronInstrumentationCrystallographic defectPerovskite (structure)Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms
researchProduct

Large scale computer modelling of point defects in ABO 3 perovskites

2005

We present results for basic intrinsic defects: F-type electron centers, free and bound electron and hole polarons in ABO3 perovskites. Both one-site (atomic) and two-site (molecular) hole polarons are expected to coexist, characterized by close absorption energies. Shell Model (SM) and intermediate neglect of differential overlap (INDO) calculations of the F center diffusion indicate that the relevant activation energy is quite low, ca. 0.8 eV. Further INDO calculations support the existence of self-trapped electron polarons in PbTiO3, BaTiO3, KNbO3, and KTaO3 crystals. The relevant lattice relaxation energies are typically 0.2 eV, whereas the optical absorption energies are around 0.8 eV.…

Condensed Matter::Materials SciencePhase transitionCondensed matter physicsExtended X-ray absorption fine structureChemistryElectronElectronic structurePolaronCrystallographic defectMolecular physicsPerovskite (structure)Solid solutionphysica status solidi (c)
researchProduct

Magnetic field tuning of the smart materials domain structure

1998

The investigation of the behavior of the ferroelectric phase transition with magnetic filed tuning and concentration change is highly attractive owing to the possibility to prepare alloying samples and to predict theoretically the parameters of the magnetic field and concentration response at relatively small concentrations. These parameters may be extracted from the equation of states of the perovskite under investigation in the assumption of the linear response. The study of the movement of the paraelectric - ferroelectric interphase boundary in (Ba,Sr)TiO 3 with concentration change and in constant magnetic fields is provided in the framework of the mean-field theory. The analytical solu…

Condensed Matter::Materials SciencePhase transitionMaterials scienceCondensed matter physicsMagnetismDielectricPolarization (waves)Smart materialFerroelectricityMagnetic fieldPerovskite (structure)SPIE Proceedings
researchProduct

First-Principles Simulation of Substitutional Defects in Perovskites

2000

The results of supercell calculations of electronic structure and related properties of substitutional impurities in perovskite oxides KNbO3 and KTaO3 are discussed. For Fe impurities in KNbO3, the results obtained in the local density approximation (LDA) and in the LDA+U approach (that allows an ad hoc treatment of nonlocality in exchange-correlation) are compared, and different impurity charge configurations are discussed. The study of off-centre Li defects in incipient ferroelectric KTaO3 have been done by the appropriately parametrized Intermediate Neglect of Differential Overlap (INDO) method. The interaction energies of two off-centre impurities in different relative configurations ar…

Condensed Matter::Materials ScienceQuantum nonlocalityMaterials scienceCondensed matter physicsImpurityCondensed Matter::SuperconductivitySupercell (crystal)Condensed Matter::Strongly Correlated ElectronsCharge (physics)Electronic structureLocal-density approximationFerroelectricityPerovskite (structure)
researchProduct

Theoretical Prediction and Experimental Confirmation of Charge Transfer Vibronic Excitons and Their Phase in ABO3 Perovskite Crystals

2002

AbstractThe current theoretical and experimental knowledge of new polaronic-type excitons in ferroelectric oxides - charge transfer vibronic excitons (CTVE) is discussed. It is shown that quantum chemical Hartree-Fock-type calculations using a semiempirical Intermediate Neglect of Differential Overlap (INDO) method (modified for ionic/partly ionic solids) as well as photoluminescence studies in ferroelectric oxygen-octahedral perovskites confirm the CTVE existence. Our INDO calculations for KTaO3 and KNbO3 have demonstrated that the triplet exciton is a triad centre containing one active O atom and two Ta atoms sitting on the opposite sites from this O atom. The total energy of a system is …

Condensed Matter::Materials ScienceTetragonal crystal systemMaterials sciencePhotoluminescenceComputational chemistryExcitonAtomPhysics::Atomic and Molecular ClustersIonic bondingGround stateFerroelectricityMolecular physicsPerovskite (structure)MRS Proceedings
researchProduct

Singularity formation in the Gross-Pitaevskii equation and collapse in Bose-Einstein condensates

2004

We study the mechanisms of collapse of the condensate wave function in the Gross-Pitaevskii theory with attractive interparticle interaction. We reformulate the Gross-Pitaevskii equation as Newton's equations for a flux of particles, and introduce the collapsing fraction of particles. We assume that this collapsing fraction is expelled from the condensate due to dissipation. Using this hypothesis we analyze the dependence of the collapse behavior on the initial conditions. We find that, for a properly chosen negative scattering length, the remnant fraction of atoms becomes larger when the initial aspect ratio of the condensate is increased.

Condensed Matter::Quantum GasesPhysicsCondensed Matter::OtherCollapse (topology)Scattering lengthWave equationAtomic and Molecular Physics and Opticslaw.inventionGross–Pitaevskii equationSingularityClassical mechanicsRadiation pressurelawWave functionBose–Einstein condensatePhysical Review A
researchProduct

Collapse in the symmetric Gross–Pitaevskii equation

2004

A generic mechanism of collapse in the Gross–Pitaevskii equation with attractive interparticle interactions is gained by reformulating this equation as Newton's equation of motion for a system of particles with a constraint. 'Quantum pressure' effects give rise to formation of a potential barrier around the emerging singularity, which prevents a fraction of the particles from falling into the singularity. For reasonable initial widths of the condensate, the fraction of collapsing particles for spherically symmetric traps is found to be consistently about 0.7.

Condensed Matter::Quantum GasesPhysicsPhysics and Astronomy (miscellaneous)Equations of motionCollapse (topology)Atomic and Molecular Physics and Opticslaw.inventionGross–Pitaevskii equationSingularityClassical mechanicslawRectangular potential barrierMatter waveWave functionBose–Einstein condensateJournal of Optics B: Quantum and Semiclassical Optics
researchProduct