Search results for "Vacuum state"

showing 10 items of 38 documents

Spacetime curvature and Higgs stability after inflation

2015

We investigate the dynamics of the Higgs field at the end of inflation in the minimal scenario consisting of an inflaton field coupled to the Standard Model only through the non-minimal gravitational coupling $\xi$ of the Higgs field. Such a coupling is required by renormalisation of the Standard Model in curved space, and in the current scenario also by vacuum stability during high-scale inflation. We find that for $\xi\gtrsim 1$, rapidly changing spacetime curvature at the end of inflation leads to significant production of Higgs particles, potentially triggering a transition to a negative-energy Planck scale vacuum state and causing an immediate collapse of the Universe.

General PhysicsParticle physicsCosmology and Nongalactic Astrophysics (astro-ph.CO)spacetime curvaturePhysics MultidisciplinaryVacuum stateFOS: Physical sciencesGeneral Physics and Astronomy01 natural sciences09 Engineeringrenormalizationvacuum stateStandard ModelGravitationGeneral Relativity and Quantum CosmologyHigh Energy Physics - Phenomenology (hep-ph)vacuum stability0103 physical sciencesPARTICLE-PRODUCTIONELECTROWEAK VACUUMHiggs fieldHiggs particles010306 general physics01 Mathematical SciencesPlanck scalePhysicsInflation (cosmology)Science & Technology02 Physical SciencesQuantum field theory in curved spacetimeta114010308 nuclear & particles physicsPhysicsHigh Energy Physics::Phenomenologyhep-phInflatonFIELDSThe Standard ModelCREATIONHiggs fieldHigh Energy Physics - PhenomenologyPhysical Sciencesastro-ph.COHiggs bosonAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Enhanced local-type inflationary trispectrum from a non-vacuum initial state

2011

We compute the primordial trispectrum for curvature perturbations produced during cosmic inflation in models with standard kinetic terms, when the initial quantum state is not necessarily the vacuum state. The presence of initial perturbations enhances the trispectrum amplitude for configuration in which one of the momenta, say $k_3$, is much smaller than the others, $k_3 \ll k_{1,2,4}$. For those squeezed configurations the trispectrum acquires the so-called local form, with a scale dependent amplitude that can get values of order $ \epsilon ({k_1}/{k_3})^2$. This amplitude can be larger than the prediction of the so-called Maldacena consistency relation by a factor $10^6$, and can reach t…

High Energy Physics - TheoryAstrofísicaGravitacióCosmology and Nongalactic Astrophysics (astro-ph.CO)Vacuum stateFOS: Physical sciencesAstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsCurvatureKinetic energy01 natural sciencesGeneral Relativity and Quantum CosmologyQuantum state0103 physical sciencesSensitivity (control systems)010306 general physicsMathematical physicsPhysicsCosmologia010308 nuclear & particles physicsOrder (ring theory)Astronomy and AstrophysicsAmplitudeHigh Energy Physics - Theory (hep-th)TrispectrumAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The 1-loop effective potential for the Standard Model in curved spacetime

2018

The renormalisation group improved Standard Model effective potential in an arbitrary curved spacetime is computed to one loop order in perturbation theory. The loop corrections are computed in the ultraviolet limit, which makes them independent of the choice of the vacuum state and allows the derivation of the complete set of $\beta$-functions. The potential depends on the spacetime curvature through the direct non-minimal Higgs-curvature coupling, curvature contributions to the loop diagrams, and through the curvature dependence of the renormalisation scale. Together, these lead to significant curvature dependence, which needs to be taken into account in cosmological applications, which i…

High Energy Physics - TheoryDe Sitter spaceVacuum stateUNIVERSEfield theories in higher dimensionskosmologia01 natural sciencesGeneral Relativity and Quantum CosmologyPhysics Particles & FieldsHigh Energy Physics - Phenomenology (hep-ph)INFLATIONRADIATIVE-CORRECTIONSGauge theoryELECTROWEAK VACUUMMathematical physicsPhysics02 Physical SciencesPhysicshep-thhiukkasfysiikan standardimalliRENORMALIZATION-GROUP EQUATIONShep-phSPONTANEOUS SYMMETRY-BREAKINGNuclear & Particles PhysicsHigh Energy Physics - PhenomenologyHIGGS MASSPhysical SciencesGAUGE-THEORIESMathematics::Differential GeometryNuclear and High Energy Physicsgr-qcFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Curvatureclassical theories of gravityGeneral Relativity and Quantum Cosmology0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityfield theories in lower dimensions010306 general physics01 Mathematical SciencesInflation (cosmology)Science & TechnologySpacetimeSTABILITYta114010308 nuclear & particles physicsgravitaatioLoop (topology)High Energy Physics - Theory (hep-th)INTERACTING SCALAR FIELDlcsh:QC770-798Perturbation theory (quantum mechanics)Journal of High Energy Physics
researchProduct

Dispersion Interaction between Two Hydrogen Atoms in a Static Electric Field

2019

We consider the dispersion interaction between two ground-state hydrogen atoms, interacting with the quantum electromagnetic field in the vacuum state, in the presence of an external static electric field, both in the nonretarded and in the retarded Casimir-Polder regime. We show that the presence of the external field strongly modifies the dispersion interaction between the atoms, changing its space dependence. Moreover, we find that, for specific geometrical configurations of the two atoms with respect to the external field and/or the relative orientation of the fields acting on the two atoms, it is possible to change the character of the dispersion force, turning it from attractive to re…

High Energy Physics - TheoryElectromagnetic fieldPhysicsQuantum PhysicsCondensed matter physicsVacuum stateFOS: Physical sciencesQuantum fluctuationsGeneral Physics and AstronomySpace (mathematics)Casimir-Polder force01 natural sciencesLondon dispersion forceHigh Energy Physics - Theory (hep-th)Electric field0103 physical sciencesDispersion (optics)Dispersion interactionQuantum Physics (quant-ph)010306 general physicsQuantumQuantum fluctuationPhysical Review Letters
researchProduct

ON QUANTUM GRAVITY, ASYMPTOTIC SAFETY AND PARAMAGNETIC DOMINANCE

2012

We discuss the conceptual ideas underlying the Asymptotic Safety approach to the nonperturbative renormalization of gravity. By now numerous functional renormalization group studies predict the existence of a suitable nontrivial ultraviolet fixed point. We use an analogy to elementary magnetic systems to uncover the physical mechanism behind the emergence of this fixed point. It is seen to result from the dominance of certain paramagnetic-type interactions over diamagnetic ones. Furthermore, the spacetimes of Quantum Einstein Gravity behave like a polarizable medium with a "paramagnetic" response to external perturbations. Similarities with the vacuum state of Yang-Mills theory are pointed …

High Energy Physics - TheoryPhysicsGravity (chemistry)Vacuum stateAsymptotic safety in quantum gravityFOS: Physical sciencesAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Fixed pointRenormalization groupGeneral Relativity and Quantum CosmologyRenormalizationHigh Energy Physics - PhenomenologyGeneral Relativity and Quantum CosmologyTheoretical physicsHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)Space and Planetary ScienceQuantum gravityFunctional renormalization groupQuantumMathematical PhysicsInternational Journal of Modern Physics D
researchProduct

Acceleration radiation and the Planck scale

2008

A uniformly accelerating observer perceives the Minkowski vacuum state as a thermal bath of radiation. We point out that this field-theory effect can be derived, for any dimension higher than two, without actually invoking very high energy physics. This supports the view that this phenomenon is robust against Planck-scale physics and, therefore, should be compatible with any underlying microscopic theory.

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsQuantum field theory in curved spacetime010308 nuclear & particles physicsVacuum stateFOS: Physical sciencesAcceleration (differential geometry)RadiationObserver (physics)01 natural sciencesPartícules (Física nuclear)Classical mechanicsHigh Energy Physics - Theory (hep-th)0103 physical sciencesMinkowski spaceThermalMicroscopic theory010306 general physicsPhysical Review D
researchProduct

Space and Time Averaged Quantum Stress Tensor Fluctuations

2021

We extend previous work on the numerical diagonalization of quantum stress tensor operators in the Minkowski vacuum state, which considered operators averaged in a finite time interval, to operators averaged in a finite spacetime region. Since real experiments occur over finite volumes and durations, physically meaningful fluctuations may be obtained from stress tensor operators averaged by compactly supported sampling functions in space and time. The direct diagonalization, via a Bogoliubov transformation, gives the eigenvalues and the probabilities of measuring those eigenvalues in the vacuum state, from which the underlying probability distribution can be constructed. For the normal-orde…

High Energy Physics - TheoryVacuum stateDegrees of freedom (physics and chemistry)Thermal fluctuationsFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)kosmologia114 Physical sciences01 natural sciencesGeneral Relativity and Quantum Cosmology0103 physical sciencesMinkowski space010306 general physicskvanttifysiikkaEigenvalues and eigenvectorsQuantum fluctuationPhysicsQuantum Physics010308 nuclear & particles physicsCauchy stress tensorMathematical analysisgravitaatioHigh Energy Physics - Theory (hep-th)gravitaatioaallotQuantum Physics (quant-ph)Scalar field
researchProduct

Method to compute the stress-energy tensor for a quantized scalar field when a black hole forms from the collapse of a null shell

2020

A method is given to compute the stress-energy tensor for a massless minimally coupled scalar field in a spacetime where a black hole forms from the collapse of a spherically symmetric null shell in four dimensions. Part of the method involves matching the modes for the in vacuum state to a complete set of modes in Schwarzschild spacetime. The other part involves subtracting from the unrenormalized expression for the stress-energy tensor when the field is in the in vacuum state, the corresponding expression when the field is in the Unruh state and adding to this the renormalized stress-energy tensor for the field in the Unruh state. The method is shown to work in the two-dimensional case wh…

High Energy Physics - Theorydimension: 4space-time: SchwarzschildField (physics)Vacuum stateFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)coupling: scalarcoupling: minimal01 natural sciencesGeneral Relativity and Quantum Cosmologyrenormalizationvacuum stateGeneral Relativity and Quantum Cosmologyblack hole: formation0103 physical sciencesStress–energy tensorsymmetry: rotationTensordimension: 2010306 general physicsMathematical physicsPhysics[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]010308 nuclear & particles physicsshell modelfield theory: scalarfield theory in curved spacegravitation: collapseBlack holeFormal aspects of field theoryUnruh effectHigh Energy Physics - Theory (hep-th)tensor: energy-momentum[PHYS.GRQC]Physics [physics]/General Relativity and Quantum Cosmology [gr-qc]quantizationSchwarzschild radiusScalar fieldPhysical Review D
researchProduct

Oh, wait, O8 de Sitter may be unstable!

2021

We analyze the stability of four-dimensional de Sitter vacua constructed by compactifying massive Type IIA supergravity in the presence of two O8 sources [1]. When embedded in String Theory the first source has a clear interpretation as an O8$_-$ plane, but the second one could correspond to either an O8$_+$ plane or to an O8$_-$ plane with 16 D8-branes on top. We find that this latter solution has a tachyonic instability, corresponding to the D8-branes moving away from the O8$_-$ plane. We comment on the possible ways of distinguishing between these sources.

High Energy Physics - Theoryvacuum state: de SitterNuclear and High Energy PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi Matematicidimension: 4compactificationSuperstring VacuaFOS: Physical sciencesD-braneString theory01 natural sciencessupergravity: Type IIADe Sitter universeFlux compactifications0103 physical sciencesC++ string handlingBrane cosmologylcsh:Nuclear and particle physics. Atomic energy. RadioactivityD-brane010306 general physicsMathematical physicsPhysicsCompactification (physics)010308 nuclear & particles physicsPlane (geometry)[PHYS.HTHE]Physics [physics]/High Energy Physics - Theory [hep-th]Supergravitytachyon: stabilitySuperstring Vacua D-branes Flux compactificationsHigh Energy Physics - Theory (hep-th)D-branesstringlcsh:QC770-798
researchProduct

How to discover QCD Instantons at the LHC

2020

Topological Effects in the Standard Model: Instantons, Sphalerons and Beyond at LHC, Geneva, Switzerland, 16 Dec 2020 - 18 Dec 2020; The European physical journal / C 81(7), 624 (2021). doi:10.1140/epjc/s10052-021-09412-1

Particle physicsInstantonp p: scatteringPhysics and Astronomy (miscellaneous)High Energy Physics::LatticeFOS: Physical sciencesquantum [tunneling]QC770-798AstrophysicsComputer Science::Digital Libraries01 natural sciences530Standard Modelvacuum statetopologicalHigh Energy Physics::TheoryCross section (physics)High Energy Physics - Phenomenology (hep-ph)Nuclear and particle physics. Atomic energy. Radioactivityasymmetry [baryon]0103 physical sciencesscattering [p p]ddc:530quantum chromodynamics: instantonLimit (mathematics)010306 general physicsEngineering (miscellaneous)Quantum tunnellingtunneling: quantumQuantum chromodynamicsPhysicsLarge Hadron Colliderelectroweak interaction010308 nuclear & particles physicsHigh Energy Physics::Phenomenologysymmetry breaking: chiralQB460-466High Energy Physics - PhenomenologyCERN LHC Collinstanton [quantum chromodynamics]confinementbaryon: asymmetryComputer Science::Mathematical Softwarechiral [symmetry breaking]Non-perturbativesignature
researchProduct