Search results for "Van der Waals"

showing 10 items of 203 documents

Lennard-Jones Parameters for B3LYP/CHARMM27 QM/MM Modeling of Nucleic Acid Bases.

2015

Combined quantum mechanics/molecular mechanics (QM/MM) methods allow computations on chemical events in large molecular systems. Here, we have tested the suitability of the standard CHARMM27 forcefield Lennard-Jones van der Waals (vdW) parameters for the treatment of nucleic acid bases in QM/MM calculations at the B3LYP/6-311+G(d,p)-CHARMM27 level. Alternative parameters were also tested by comparing the QM/MM hydrogen bond lengths and interaction energies with full QM [B3LYP/6-311+G(d,p)] results. The optimization of vdW parameters for nucleic acid bases is challenging because of the likelihood of multiple hydrogen bonds between the nucleic acid base and a water molecule. Two sets of optim…

HydrogenHydrogen bondChemistrychemistry.chemical_elementThermodynamicsElectrostaticsComputer Science ApplicationsQM/MMsymbols.namesakeDeprotonationComputational chemistrysymbolsNucleic acidMoleculePhysical and Theoretical Chemistryvan der Waals forceJournal of chemical theory and computation
researchProduct

Force interactions and adhesion of gold contacts using a combined atomic force microscope and transmission electron microscope

2002

Force interactions and adhesion of gold contacts using a combined atomic force microscope and transmission electron microscope

Kelvin probe force microscopeChemistryAtomic force microscopyGeneral Physics and AstronomyNanotechnologySurfaces and InterfacesGeneral ChemistryAdhesionConductive atomic force microscopyCondensed Matter PhysicsQuantitative Biology::Cell BehaviorSurfaces Coatings and Filmssymbols.namesakeTransmission electron microscopysymbolsMagnetic force microscopevan der Waals forceApplied Surface Science
researchProduct

Assessment of Polarity in GaN Self-Assembled Nanowires by Electrical Force Microscopy

2015

In this work, we demonstrate the capabilities of atomic force microscopies (AFMs) for the nondestructive determination of the polarity of GaN nanowires (NWs). Three complementary AFMs are analyzed here: Kelvin probe force microscopy (KPFM), light-assisted KPFM, and piezo-force microscopy (PFM). These techniques allow us to assess the polarity of individual NWs over an area of tens of μm(2) and provide statistics on the polarity of the ensemble with an accuracy hardly reachable by other methods. The precise quantitative analysis of the tip-sample interaction by multidimensional spectroscopic measurements, combined with advanced data analysis, has allowed the separate characterization of elec…

Kelvin probe force microscopePolarity (physics)ChemistryMechanical EngineeringSurface photovoltageNanowireBioengineeringNanotechnologyGeneral ChemistryCondensed Matter Physics[PHYS.COND.CM-MS] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Characterization (materials science)Condensed Matter::Materials Sciencesymbols.namesakeMicroscopysymbols[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]General Materials Sciencevan der Waals forcePhotoconductive atomic force microscopyComputingMilieux_MISCELLANEOUS
researchProduct

Layer-dependent mechanical properties and enhanced plasticity in the van der Waals chromium trihalide magnets

2020

The mechanical properties of magnetic materials are instrumental for the development of the magnetoelastic theory and the optimization of strain-modulated magnetic devices. In particular, two-dimensional (2D) magnets hold promise to enlarge these concepts into the realm of low-dimensional physics and ultrathin devices. However, no experimental study on the intrinsic mechanical properties of the archetypal 2D magnet family of the chromium trihalides has thus far been performed. Here, we report the room temperature layer-dependent mechanical properties of atomically thin CrI3 and CrCl3, finding that bilayers of CrI3 and CrCl3 have Young's moduli of 62.1 GPa and 43.4 GPa, with the highest sust…

Letter2D magnetic materialsnanoindentationchemistry.chemical_elementFOS: Physical sciencesBioengineeringYoung's modulus02 engineering and technologyApplied Physics (physics.app-ph)mechanical propertiesPlasticityChromiumsymbols.namesakeGeneral Materials ScienceYoung’s modulusstrain tunabilityCondensed Matter - Materials ScienceCondensed matter physicsMechanical EngineeringTrihalideMaterials Science (cond-mat.mtrl-sci)MagnetostrictionPhysics - Applied PhysicsGeneral ChemistryNanoindentation021001 nanoscience & nanotechnologyCondensed Matter Physicscond-mat.mtrl-sci3. Good healthchemistryplasticityMagnetsymbolsvan der Waals forcephysics.app-ph0210 nano-technology
researchProduct

Ligand entrapment in twofold interpenetrating PtS matrixes by metallo-organic frameworks.

2003

Single-crystal X-ray crystallography was used to determine the structures of four metallo-organic frameworks (MOFs). A dendritic tetradentate ligand (tetrakis(isonicotinoxymethyl)methane, TINM) was used with first-row transition-metal elements copper, nickel, and cobalt to synthesize MOFs with a PtS interpenetration, due to both planar and tetrahedral junctions being present in the framework. Two different polymeric complexes, 1 and 2, were obtained from similar starting materials, TINM and Cu(NO(3))(2).3H(2)O, but different solvents. The use of dichloromethane in addition to methanol and water promoted the coordination of nitrate ions to the copper. With only methanol and water used as sol…

Ligandchemistry.chemical_elementCopperInorganic ChemistrySolventNickelchemistry.chemical_compoundCrystallographysymbols.namesakechemistrysymbolsOrganic chemistryMoleculePhysical and Theoretical Chemistryvan der Waals forceCobaltDichloromethaneInorganic chemistry
researchProduct

Molecular dynamics near the glass transition

1993

Solid state 13C NMR spectroscopy has been applied to investigate the time scale and the geometry of rotational motions near the glass transition of the low-molar-mass van der Waals glass former 1,3,5-tri-α-naphthylbenzene (T g = 342 K). Two-dimensional 13C exchange spectra were taken between 347 and 372 K. With the principal values of the 13C chemical shift tensors determined from 13C CP/MAS spectra and static one-dimensional 13C spectra, the two-dimensional spectra are interpreted according to the isotropic rotational diffusional model to yield mean correlation times τ0 in the range 10 ms ˇ- τ0 ˇ- 50 s, and a log-Gaussian distribution of correlation times with a width of 1·5 decades. The m…

Magic angleChemistryCarbon-13BiophysicsAnalytical chemistryCondensed Matter PhysicsSpectral lineNMR spectra databaseViscosityMolecular dynamicssymbols.namesakesymbolsPhysical and Theoretical Chemistryvan der Waals forceGlass transitionMolecular BiologyMolecular Physics
researchProduct

Controlling the anisotropy of a van der Waals antiferromagnet with light

2020

Ultrafast optical control of magnetic anisotropy in a van der Waals antiferromagnet activates a sub-THz two-dimensional magnon.

MagnetismFOS: Physical sciencesPhysics::Optics02 engineering and technology01 natural sciencessymbols.namesake0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Physics::Atomic and Molecular Clusters010306 general physicsAnisotropySpin (physics)MaterialsResearch ArticlesPhysicsCondensed Matter - Materials ScienceMultidisciplinaryCondensed matter physicsCondensed Matter - Mesoscale and Nanoscale PhysicsMagnonMaterials Science (cond-mat.mtrl-sci)FísicaSciAdv r-articlesOptics021001 nanoscience & nanotechnologyCondensed Matter PhysicsPhotoexcitationMagnetic anisotropyFerromagnetismsymbolsCondensed Matter::Strongly Correlated Electronsddc:500van der Waals force0210 nano-technologyResearch Article
researchProduct

Origin of pressure-induced insulator-to-metal transition in the van der Waals compound FePS3 from first-principles calculations

2020

The authors acknowledge the assistance of the University Computer Center of Saint‐Petersburg State University in the accomplishment of high‐performance computations. A.K. is grateful to the Latvian Council of Science project no. lzp‐2018/2‐0353 for financial support.

Materials scienceBand gapCell volumelayered compoundFOS: Physical sciencesElectronic structure010402 general chemistry01 natural sciencesMolecular physicsThiophosphateMetalsymbols.namesakechemistry.chemical_compound0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Physics::Atomic and Molecular Clustersfirst principles calculationsFePS3insulator-to-metal transitionCondensed Matter - Materials Science010304 chemical physicsMaterials Science (cond-mat.mtrl-sci)General Chemistry0104 chemical scienceshigh pressureComputational MathematicschemistryLinear combination of atomic orbitalsvisual_artsymbolsvisual_art.visual_art_mediumDensity of statesvan der Waals force
researchProduct

Two-dimensional hydrogenated buckled gallium arsenide: an ab initio study

2020

First-principles calculations have been carried out to investigate the stability, structural and electronic properties of two-dimensional (2D) hydrogenated GaAs with three possible geometries: chair, zigzag-line and boat configurations. The effect of van der Waals interactions on 2D H-GaAs systems has also been studied. These configurations were found to be energetic and dynamic stable, as well as having a semiconducting character. Although 2D GaAs adsorbed with H tends to form a zigzag-line configuration, the energy differences between chair, zigzag-line and boat are very small which implies the metastability of the system. Chair and boat configurations display a [Formula: see text]-[Formu…

Materials scienceBand gapPhysicsAb initioGallium nitride02 engineering and technology021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesMolecular physicsGallium arsenidesymbols.namesakechemistry.chemical_compoundchemistryBoron nitrideMetastability0103 physical sciencessymbolsGeneral Materials ScienceDensity functional theoryvan der Waals force010306 general physics0210 nano-technologyJournal of physics : condensed matter
researchProduct

Out-of-plane transport of 1T-TaS2/graphene-based van der Waals heterostructures

2021

Due to their anisotropy, layered materials are excellent candidates for studying the interplay between the in-plane and out-of-plane entanglement in strongly correlated systems. A relevant example is provided by 1T-TaS2, which exhibits a multifaceted electronic and magnetic scenario due to the existence of several charge density wave (CDW) configurations. It includes quantum hidden phases, superconductivity and exotic quantum spin liquid (QSL) states, which are highly dependent on the out-of-plane stacking of the CDW. In this system, the interlayer stacking of the CDW is crucial for the interpretation of the underlying electronic and magnetic phase diagram. Here, thin-layers of 1T-TaS2 are …

Materials scienceBand gapquantum materialsStackingVan der Waals heterostructuresGeneral Physics and AstronomyFOS: Physical sciencescharge-density waves02 engineering and technologyQuantum entanglementDFT calculations01 natural scienceslaw.inventionsymbols.namesakelaw0103 physical sciences11. Sustainability1T-TAS2General Materials Science010306 general physicsMaterialsSuperconductivityCondensed Matter - Materials ScienceCondensed matter physicsGrapheneFermi levelphase-transitionsGeneral EngineeringMaterials Science (cond-mat.mtrl-sci)Conductivitat elèctrica021001 nanoscience & nanotechnology2D materialsstatemodelelectrical propertiestransition-metal dichalcogenidessymbolsQuantum spin liquid0210 nano-technologyCharge density wave
researchProduct