Search results for "Vapours"
showing 10 items of 15 documents
Halloysite nanotubes filled with MgO for paper reinforcement and deacidification
2021
Abstract A novel material for the deacidification and protection of paper has been designed by using MgO filled halloysite nanotubes (Hal). The ability of MgO loaded nanotubes to control the acidic conditions was evaluated by pH measurements in aqueous solvent. Afterwards, paper was impregnated into hydroxypropyl cellulose dispersions containing the consolidating material. A simulation of strong acidic conditions allowed us to evaluate the deacidification effect of the composite material on the samples. In particular, the paper reaches a pH of 7.7 after 1 h exposition to HNO3 vapours when MgO-Hal nanoparticles are added to the impregnation mixture at a concentration of 10 wt% and it remains…
The driving factors of new particle formation and growth in the polluted boundary layer
2021
Publisher Copyright: © 2021 Mao Xiao et al. New particle formation (NPF) is a significant source of atmospheric particles, affecting climate and air quality. Understanding the mechanisms involved in urban aerosols is important to develop effective mitigation strategies. However, NPF rates reported in the polluted boundary layer span more than 4 orders of magnitude, and the reasons behind this variability are the subject of intense scientific debate. Multiple atmospheric vapours have been postulated to participate in NPF, including sulfuric acid, ammonia, amines and organics, but their relative roles remain unclear. We investigated NPF in the CLOUD chamber using mixtures of anthropogenic vap…
Observations of high concentrations of I2and IO in coastal air supporting iodine-oxide driven coastal new particle formation
2010
[1] Theoretical studies have predicted that concentrations of gaseous I2 and IO of the order of 80–100 ppt and 40–50 ppt, respectively, are required in coastal air to account for photochemically-driven coastal new-particle formation events to occur. However, measurements reported to date (i.e., ∼20 ppt I2, ≤ 10 ppt IO) have not supported the required model predictions. Here, we present measurements of high concentrations of I2 and IO in N.E. Atlantic marine air on the west coast of Ireland. The maximum mixing ratios of daytime I2 and IO over the seaweed beds during low tide were 302 ppt and 35 ppt, respectively. The I2 distribution was rather inhomogeneous, even at the inter-tidal zone, but…
Barrier properties of anti-gas military garments, considering exposure to gas organic compounds
2020
The problems of determining the protective properties of barrier materials used for the production of body surface protection products of an isolative type are very actual. These garments are expected to have long-term resistance against permeation of toxic substances. The paper deals with the study of the effect of organic solvent vapours on the changes in protective properties of selected anti-gas protective garments commonly used by the North Atlantic Treaty Organization armed forces. Permeation measurements of selected gases with integral permeameter were performed to verify their barrier properties, surface changes after exposure to selected solvents by using a 3D optical profilometer,…
Control of food spoilage fungi by ethanol
2011
This review discusses the effects of ethanol on the inhibition of growth and germination of fungi and on the inactivation of fungal spores. After a brief survey on the impact of spoilage fungi on the economy and food quality, the major applications of ethanol in controlling fruit decay and extending the shelf-life of food products are reviewed. Many parameters including minimum inhibitory concentration (MIC) and D-values for various moulds are included. The thermodynamic relationship between the liquid phase and the headspace and the mode of action of ethanol on fungi are explained. Due to their promising use as a fumigant, special attention is paid to ethanol vapours.
Development of a Textile Nanocomposite as Naked Eye Indicator of the Exposition to Strong Acids
2017
[EN] Chemical burns, mainly produced by acids, are a topic of concern. A new sensing material for the detection of strong acids able to be incorporated into textiles has been developed. The material is prepared by the covalent attachment of 2,2 ',4,4 ',4 ''-pentamethoxy triphenyl methanol to a mesoporous material which further is included in a nitro resin to obtain a colourless composite. The response of this composite to diverse acid solutions was tested showing the appearance of an intense purple colour (with a colour difference higher than 160) that can be monitored by the naked eye or could be easily digitised to feed an instrumental sensor. Reversibility and resistance to washing cycle…
LANGMUIR-SCHAEFER FILMS OF A NEW CALIX[4]PYRROLE-BASED MACROCYCLE EXHIBITING INDUCED CHIRALITY UPON DIFFERENTIATED BINDING WITH CHIRAL ALCOHOL VAPOURS
2004
Graphene electrochemical responses sense surroundings
2012
Abstract Graphite oxide (GO) paper, obtained by direct filtration of exfoliated GO in water over PTFE membrane filters, was reduced by using hydrazine vapours. The graphene-paper thus obtained was characterized by the combination of different techniques. The electrochemical characterization by cyclic voltammetry, chronoamperometry and chronopotentiometry presents a strong influence of the working conditions: temperature, electrolyte concentration and current on the electrochemical responses, indicating a good ability of the material to sense ambient and working conditions. Electrochemical devices based on graphene are expected to work as dual, and simultaneous, sensing-actuators.
Solid proton conductors as room-temperature gas sensors
1993
Ammonia-exchanged ceramic samples of beta alumina have been obtained from plasma-dispersed powders. The ionic conductivity is slightly affected by ion exchange, but the surface conductivity for the amonia-exchanged sample drastically changes in the presence of the water and ammonia vapours. The ammonia-doped xerogel of antimonic acid hydrate in the form of a thick film has been tested as a potentiometric ammonia sensor.
Organic Thin-Film Transistors with Enhanced Sensing Capabilities
2009
Organic thin-film transistors, used as sensing devices, have been attracting quite a considerable interest lately as they offer advantages such as multi parameter behaviour and possibility to be quite easily molecularly tuned for the detection of specific analytes. Here, a study on the dependences of the devices responses on important parameters such as the active layer thickness and its morphology as well as on the transistor channel length is presented. To introduce the least number of variables the system chosen for this study is quite a simple and well assessed one being based on a thiophene oligomer active layer exposed to 1-butanol vapours.