Search results for "Variability"

showing 10 items of 904 documents

Impact of internal variability on projections of Sahel precipitation change.

2017

12 pages; International audience; The impact of the increase of greenhouse gases on Sahelian precipitation is very uncertain in both its spatial pattern and magnitude. In particular, the relative importance of internal variability versus external forcings depends on the time horizon considered in the climate projection. In this study we address the respective roles of the internal climate variability versus external forcings on Sahelian precipitation by using the data from the CESM Large Ensemble Project, which consists of a 40 member ensemble performed with the CESM1-CAM5 coupled model for the period 1920–2100. We show that CESM1-CAM5 is able to simulate the mean and interannual variabilit…

010504 meteorology & atmospheric sciences0208 environmental biotechnologyClimate changeMagnitude (mathematics)Time horizon02 engineering and technologyForcing (mathematics)01 natural sciencesWest AfricaPrecipitation0105 earth and related environmental sciencesGeneral Environmental ScienceHorizon (archaeology)Renewable Energy Sustainability and the EnvironmentPublic Health Environmental and Occupational Healthuncertainties020801 environmental engineeringclimate change13. Climate action[SDU.STU.CL]Sciences of the Universe [physics]/Earth Sciences/ClimatologyClimatologyGreenhouse gasinternal variabilityEnvironmental scienceCommon spatial pattern[ SDU.STU.CL ] Sciences of the Universe [physics]/Earth Sciences/Climatology
researchProduct

2019

Abstract. This study uses the synergy of multi-resolution soil moisture (SM) satellite estimates from the Soil Moisture Ocean Salinity (SMOS) mission, a dense network of ground-based SM measurements, and a soil–vegetation–atmosphere transfer (SVAT) model, SURFEX (externalized surface), module ISBA (interactions between soil, biosphere and atmosphere), to examine the benefits of the SMOS level 4 (SMOS-L4) version 3.0, or “all weather” high-resolution soil moisture disaggregated product (SMOS-L43.0; ∼1 km). The added value compared to SMOS level 3 (SMOS-L3; ∼25 km) and SMOS level 2 (SMOS-L2; ∼15 km) is investigated. In situ SM observations over the Valencia anchor station (VAS; SMOS calibrati…

010504 meteorology & atmospheric sciences0208 environmental biotechnologyFlood forecastingInitializationBiosphere02 engineering and technologyVegetation01 natural sciences020801 environmental engineeringClimatologySpatial ecologyEnvironmental scienceSatelliteSpatial variabilityWater content0105 earth and related environmental sciencesHydrology and Earth System Sciences
researchProduct

Geographic and temporal variations in turbulent heat loss from lakes : A global analysis across 45 lakes

2018

Heat fluxes at the lake surface play an integral part in determining the energy budget and thermal structure in lakes, including regulating how lakes respond to climate change. We explore patterns in turbulent heat fluxes, which vary across temporal and spatial scales, using in situ high-frequency monitoring data from 45 glob- ally distributed lakes. Our analysis demonstrates that some of the lakes studied follow a marked seasonal cycle in their turbulent surface fluxes and that turbulent heat loss is highest in larger lakes and those situated at low latitude. The Bowen ratio, which is the ratio of mean sensible to mean latent heat fluxes, is smaller at low lati- tudes and, in turn, the rel…

010504 meteorology & atmospheric sciences0208 environmental biotechnologyta1172ta1171Climate change02 engineering and technologyAquatic ScienceOceanographyAtmospheric sciences01 natural sciencesjärvetLatitudeWater balanceheat fluxesLatent heatparasitic diseaseslakesBowen ratioturbulent heat loss0105 earth and related environmental sciencesthermal structurelake surface15. Life on landilmastonmuutoksetEnergy budget020801 environmental engineeringclimate change13. Climate actionHeat transferarticlesEnvironmental scienceSpatial variabilitylämpötilaenergy budgetlämpöhäviöLimnology and Oceanography
researchProduct

Temperature Covariance in Tree Ring Reconstructions and Model Simulations Over the Past Millennium

2017

Spatial covariance in the simulated temperature evolution over the past millennium has been reported to exceed that of multiproxy-based reconstructions. Here we use tree ring-based temperature reco ...

010504 meteorology & atmospheric sciencesCovariance functionDendroclimatologyRadiative forcingCovariance010502 geochemistry & geophysicsAtmospheric sciences01 natural sciencesGeophysicsClimatologyPaleoclimatologyDendrochronologyGeneral Earth and Planetary SciencesSpatial variabilityGeology0105 earth and related environmental sciencesGeophysical Research Letters
researchProduct

Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales

2020

Summarization: The extent and impact of climate‐related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter‐Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events co…

010504 meteorology & atmospheric sciencesHYDROLOGICAL MODELSPopulation0207 environmental engineeringFLOOD RISKEnvironmental Sciences & Ecology02 engineering and technologySubtropics[SDU.STU.ME]Sciences of the Universe [physics]/Earth Sciences/Meteorology01 natural sciencesPopulation densityLatitudeClimate-related extreme events/dk/atira/pure/sustainabledevelopmentgoals/climate_actionEarth and Planetary Sciences (miscellaneous)SDG 13 - Climate ActionMeteorology & Atmospheric SciencesBURNED AREAGLOBAL CROP PRODUCTIONGeosciences Multidisciplinary020701 environmental engineeringeducation0105 earth and related environmental sciencesGeneral Environmental ScienceEvent (probability theory)education.field_of_studyScience & TechnologyLand useGlobal warmingGlobal warmingVEGETATION MODEL ORCHIDEEGeology15. Life on landTERRESTRIAL CARBON BALANCE13. Climate actionClimatologyPhysical SciencesTROPICAL CYCLONE ACTIVITYHURRICANE INTENSITYEnvironmental scienceTropical cycloneINTERANNUAL VARIABILITYLife Sciences & BiomedicineEnvironmental SciencesINCORPORATING SPITFIRE
researchProduct

Planktic foraminiferal changes in the western Mediterranean Anthropocene

2021

The increase in anthropogenic induced warming over the last two centuries is impacting marine environment. Planktic foraminifera are a globally distributed calcifying marine zooplankton responding sensitively to changes in sea surface temperatures and interacting with the food web structure. Here, we study two high resolution multicore records from two western Mediterranean Sea regions (Alboran and Balearic basins), areas highly affected by both natural climate change and anthropogenic warming. Cores cover the time interval from the Medieval Climate Anomaly to present. Reconstructed sea surface temperatures are in good agreement with other results, tracing temperature changes through the Co…

010504 meteorology & atmospheric sciencesLast 1500 yearsPopulationClimate change02 engineering and technologyOceanography01 natural sciencesWestern Mediterranean SeaForaminiferaMediterranean seaAtlantic multidecadal oscillation0202 electrical engineering electronic engineering information engineeringeducationAnthropogenic warming0105 earth and related environmental sciencesGlobal and Planetary Changeeducation.field_of_studybiology020206 networking & telecommunicationsLast 1500 yearGlobigerina bulloidesPlanktic foraminiferabiology.organism_classificationOceanographyNorth Atlantic oscillationUpwellingNatural variabilityMarine surface productionGeology
researchProduct

Hybrid inversion of radiative transfer models based on high spatial resolution satellite reflectance data improves fractional vegetation cover retrie…

2021

In forest landscapes affected by fire, the estimation of fractional vegetation cover (FVC) from remote sensing data using radiative transfer models (RTMs) enables to evaluate the ecological impact of such disturbance across plant communities at different spatio-temporal scales. Even though, when landscapes are highly heterogeneous, the fine-scale ground spatial variation might not be properly captured if FVC products are provided at moderate or coarse spatial scales, as typical of most of operational Earth observing satellite missions. The objective of this study was to evaluate the potential of a RTM inversion approach for estimating FVC from satellite reflectance data at high spatial reso…

010504 meteorology & atmospheric sciencesMean squared error0208 environmental biotechnologySoil Science02 engineering and technology01 natural sciencesArticleWorldView-3Radiative transferComputers in Earth SciencesImage resolution0105 earth and related environmental sciencesRemote sensingFractional vegetation coverForest fireGeologyInversion (meteorology)15. Life on landEcología. Medio ambienteRadiative transfer modeling020801 environmental engineering13. Climate actionGround-penetrating radarEnvironmental scienceSatelliteSpatial variabilitySentinel-2Scale (map)Remote Sensing of Environment
researchProduct

NPP VIIRS land surface temperature product validation using worldwide observation networks.

2013

International audience; Thermal infrared satellite observations of the Earth's surface are key components in estimating the surface skin temperature over global land areas. This work presents validation methodologies to estimate the quantitative uncertainty in Land Surface Temperature (LST) product derived from the Visible Infrared Imager Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (NPP) using ground-based measurements currently made operationally at many field and weather stations around the world. Over heterogeneous surfaces in terms of surface types or biophysical properties (e.g., vegetation density, emissivity), the validation protocol accounts for land s…

010504 meteorology & atmospheric sciencesMeteorologyLand surface temperature0211 other engineering and technologies02 engineering and technology01 natural sciencesIndex Terms— Land Surface TemperaturePhysics::Geophysics[SDU] Sciences of the Universe [physics]EmissivityProduct (category theory)ComputingMilieux_MISCELLANEOUS021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingvalidationThermal infraredRadiometerspatial heterogeneityVegetationNPP VIIRS13. Climate actionground-based LST[SDU]Sciences of the Universe [physics][SDE]Environmental SciencesEnvironmental scienceSatelliteSpatial variability
researchProduct

Landsat and Local Land Surface Temperatures in a Heterogeneous Terrain Compared to MODIS Values

2016

Land Surface Temperature (LST) as provided by remote sensing onboard satellites is a key parameter for a number of applications in Earth System studies, such as numerical modelling or regional estimation of surface energy and water fluxes. In the case of Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra or Aqua, pixels have resolutions near 1 km 2 , LST values being an average of the real subpixel variability of LST, which can be significant for heterogeneous terrain. Here, we use Landsat 7 LST decametre-scale fields to evaluate the temporal and spatial variability at the kilometre scale and compare the resulting average values to those provided by MODIS for the same obser…

010504 meteorology & atmospheric sciencesMeteorologyLandsat 7Science0211 other engineering and technologiesland surface temperatureTerrain02 engineering and technology01 natural sciencesNet radiometertime-space variabilityTermodinàmicaSuperfícies (Fisica)021101 geological & geomatics engineering0105 earth and related environmental sciencesRemote sensingGround truthRadiometerQSubpixel renderingsurface heterogeneitysurface heterogeneity; land surface temperature; MODIS; Landsat 7; time-space variability; ground truthMODISGeneral Earth and Planetary SciencesEnvironmental scienceSpatial variabilityModerate-resolution imaging spectroradiometerScale (map)ground truthRemote Sensing
researchProduct

Modelling nitrous oxide emissions from cropland at the regional scale

2006

Arable soils are a large source of nitrous oxide (N2O) emissions, making up half of the biogenic emissions worldwide. Estimating their source strength requires methods capable of capturing the spatial and temporal variability of N2O emissions, along with the effects of crop management. Here, we applied a process-based model, CERES, with geo-referenced input data on soils, weather, and land use to map N2O emissions from wheat-cropped soils in three agriculturally intensive regions in France. Emissions were mostly controlled by soil type and local climate conditions, and only to a minor extent by the doses of fertilizer nitrogen applied. As a result, the direct emission factors calculated at …

010504 meteorology & atmospheric sciencesNITROUS OXIDElcsh:TP670-699Atmospheric sciences01 natural sciencesBiochemistryREGIONAL SCALE[SDV.IDA]Life Sciences [q-bio]/Food engineeringAGRONOMIENitrogen cycleComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciences2. Zero hungerLand useIntensive farmingARABLE CROPSMODELLING04 agricultural and veterinary sciences[SDV.IDA] Life Sciences [q-bio]/Food engineering15. Life on landSoil type13. Climate actionGreenhouse gasSoil water040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceSpatial variabilitylcsh:Oils fats and waxesArable landFood Science
researchProduct