Search results for "Variability"
showing 10 items of 904 documents
Impact of internal variability on projections of Sahel precipitation change.
2017
12 pages; International audience; The impact of the increase of greenhouse gases on Sahelian precipitation is very uncertain in both its spatial pattern and magnitude. In particular, the relative importance of internal variability versus external forcings depends on the time horizon considered in the climate projection. In this study we address the respective roles of the internal climate variability versus external forcings on Sahelian precipitation by using the data from the CESM Large Ensemble Project, which consists of a 40 member ensemble performed with the CESM1-CAM5 coupled model for the period 1920–2100. We show that CESM1-CAM5 is able to simulate the mean and interannual variabilit…
2019
Abstract. This study uses the synergy of multi-resolution soil moisture (SM) satellite estimates from the Soil Moisture Ocean Salinity (SMOS) mission, a dense network of ground-based SM measurements, and a soil–vegetation–atmosphere transfer (SVAT) model, SURFEX (externalized surface), module ISBA (interactions between soil, biosphere and atmosphere), to examine the benefits of the SMOS level 4 (SMOS-L4) version 3.0, or “all weather” high-resolution soil moisture disaggregated product (SMOS-L43.0; ∼1 km). The added value compared to SMOS level 3 (SMOS-L3; ∼25 km) and SMOS level 2 (SMOS-L2; ∼15 km) is investigated. In situ SM observations over the Valencia anchor station (VAS; SMOS calibrati…
Geographic and temporal variations in turbulent heat loss from lakes : A global analysis across 45 lakes
2018
Heat fluxes at the lake surface play an integral part in determining the energy budget and thermal structure in lakes, including regulating how lakes respond to climate change. We explore patterns in turbulent heat fluxes, which vary across temporal and spatial scales, using in situ high-frequency monitoring data from 45 glob- ally distributed lakes. Our analysis demonstrates that some of the lakes studied follow a marked seasonal cycle in their turbulent surface fluxes and that turbulent heat loss is highest in larger lakes and those situated at low latitude. The Bowen ratio, which is the ratio of mean sensible to mean latent heat fluxes, is smaller at low lati- tudes and, in turn, the rel…
Temperature Covariance in Tree Ring Reconstructions and Model Simulations Over the Past Millennium
2017
Spatial covariance in the simulated temperature evolution over the past millennium has been reported to exceed that of multiproxy-based reconstructions. Here we use tree ring-based temperature reco ...
Projecting Exposure to Extreme Climate Impact Events Across Six Event Categories and Three Spatial Scales
2020
Summarization: The extent and impact of climate‐related extreme events depend on the underlying meteorological, hydrological, or climatological drivers as well as on human factors such as land use or population density. Here we quantify the pure effect of historical and future climate change on the exposure of land and population to extreme climate impact events using an unprecedentedly large ensemble of harmonized climate impact simulations from the Inter‐Sectoral Impact Model Intercomparison Project phase 2b. Our results indicate that global warming has already more than doubled both the global land area and the global population annually exposed to all six categories of extreme events co…
Planktic foraminiferal changes in the western Mediterranean Anthropocene
2021
The increase in anthropogenic induced warming over the last two centuries is impacting marine environment. Planktic foraminifera are a globally distributed calcifying marine zooplankton responding sensitively to changes in sea surface temperatures and interacting with the food web structure. Here, we study two high resolution multicore records from two western Mediterranean Sea regions (Alboran and Balearic basins), areas highly affected by both natural climate change and anthropogenic warming. Cores cover the time interval from the Medieval Climate Anomaly to present. Reconstructed sea surface temperatures are in good agreement with other results, tracing temperature changes through the Co…
Hybrid inversion of radiative transfer models based on high spatial resolution satellite reflectance data improves fractional vegetation cover retrie…
2021
In forest landscapes affected by fire, the estimation of fractional vegetation cover (FVC) from remote sensing data using radiative transfer models (RTMs) enables to evaluate the ecological impact of such disturbance across plant communities at different spatio-temporal scales. Even though, when landscapes are highly heterogeneous, the fine-scale ground spatial variation might not be properly captured if FVC products are provided at moderate or coarse spatial scales, as typical of most of operational Earth observing satellite missions. The objective of this study was to evaluate the potential of a RTM inversion approach for estimating FVC from satellite reflectance data at high spatial reso…
NPP VIIRS land surface temperature product validation using worldwide observation networks.
2013
International audience; Thermal infrared satellite observations of the Earth's surface are key components in estimating the surface skin temperature over global land areas. This work presents validation methodologies to estimate the quantitative uncertainty in Land Surface Temperature (LST) product derived from the Visible Infrared Imager Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (NPP) using ground-based measurements currently made operationally at many field and weather stations around the world. Over heterogeneous surfaces in terms of surface types or biophysical properties (e.g., vegetation density, emissivity), the validation protocol accounts for land s…
Landsat and Local Land Surface Temperatures in a Heterogeneous Terrain Compared to MODIS Values
2016
Land Surface Temperature (LST) as provided by remote sensing onboard satellites is a key parameter for a number of applications in Earth System studies, such as numerical modelling or regional estimation of surface energy and water fluxes. In the case of Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Terra or Aqua, pixels have resolutions near 1 km 2 , LST values being an average of the real subpixel variability of LST, which can be significant for heterogeneous terrain. Here, we use Landsat 7 LST decametre-scale fields to evaluate the temporal and spatial variability at the kilometre scale and compare the resulting average values to those provided by MODIS for the same obser…
Modelling nitrous oxide emissions from cropland at the regional scale
2006
Arable soils are a large source of nitrous oxide (N2O) emissions, making up half of the biogenic emissions worldwide. Estimating their source strength requires methods capable of capturing the spatial and temporal variability of N2O emissions, along with the effects of crop management. Here, we applied a process-based model, CERES, with geo-referenced input data on soils, weather, and land use to map N2O emissions from wheat-cropped soils in three agriculturally intensive regions in France. Emissions were mostly controlled by soil type and local climate conditions, and only to a minor extent by the doses of fertilizer nitrogen applied. As a result, the direct emission factors calculated at …