Search results for "Variant"

showing 10 items of 1267 documents

Schubert calculus and singularity theory

2010

Abstract Schubert calculus has been in the intersection of several fast developing areas of mathematics for a long time. Originally invented as the description of the cohomology of homogeneous spaces, it has to be redesigned when applied to other generalized cohomology theories such as the equivariant, the quantum cohomology, K -theory, and cobordism. All this cohomology theories are different deformations of the ordinary cohomology. In this note, we show that there is, in some sense, the universal deformation of Schubert calculus which produces the above mentioned by specialization of the appropriate parameters. We build on the work of Lerche Vafa and Warner. The main conjecture these auth…

High Energy Physics - TheoryGroup cohomologySchubert calculusGeneral Physics and AstronomyFOS: Physical sciencesMathematics::Algebraic TopologyCohomologyMotivic cohomologyAlgebraMathematics - Algebraic GeometryHigh Energy Physics - Theory (hep-th)Cup productMathematics::K-Theory and HomologyDe Rham cohomologyFOS: MathematicsEquivariant cohomologyGeometry and TopologyAlgebraic Geometry (math.AG)Mathematical PhysicsQuantum cohomologyMathematics
researchProduct

Palatini actions and quantum gravity phenomenology

2011

We show that an invariant an universal length scale can be consistently introduced in a generally covariant theory through the gravitational sector using the Palatini approach. The resulting theory is able to capture different aspects of quantum gravity phenomenology in a single framework. In particular, it is found that in this theory field excitations propagating with different energy-densities perceive different background metrics, which is a fundamental characteristic of the DSR and Rainbow Gravity approaches. We illustrate these properties with a particular gravitational model and explicitly show how the soccer ball problem is avoided in this framework. The isotropic and anisotropic cosmol…

High Energy Physics - TheoryLength scalePhysicsFOS: Physical sciencesAstronomy and AstrophysicsGeneral Relativity and Quantum Cosmology (gr-qc)Invariant (physics)General Relativity and Quantum CosmologyGravitationTheoretical physicsGeneral Relativity and Quantum CosmologySingularityHigh Energy Physics - Theory (hep-th)Quantum gravityCovariant transformationPhenomenology (particle physics)Big Bounce
researchProduct

Hairy black-holes in shift-symmetric theories

2020

Scalar hair of black holes in theories with a shift symmetry are constrained by the no-hair theorem of Hui and Nicolis, assuming spherical symmetry, time-independence of the scalar field and asymptotic flatness. The most studied counterexample is a linear coupling of the scalar with the Gauss-Bonnet invariant. However, in this case the norm of the shift-symmetry current $J^2$ diverges at the horizon casting doubts on whether the solution is physically sound. We show that this is not an issue since $J^2$ is not a scalar quantity, since $J^\mu$ is not a diff-invariant current in the presence of Gauss-Bonnet. The same theory can be written in Horndeski form with a non-analytic function $G_5 \s…

High Energy Physics - TheoryNuclear and High Energy PhysicsBlack HolesCosmology and Nongalactic Astrophysics (astro-ph.CO)FOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyGeneral Relativity and Quantum Cosmology0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivity010306 general physicsPhysical quantityMathematical physicsPhysics010308 nuclear & particles physicsScalar (physics)Black HoleInvariant (physics)Linear couplingSettore FIS/02 - Fisica Teorica Modelli e Metodi MatematiciHigh Energy Physics - Theory (hep-th)astro-ph.COlcsh:QC770-798Circular symmetryScalar fieldClassical Theories of GravityAstrophysics - Cosmology and Nongalactic AstrophysicsCounterexample
researchProduct

From multileg loops to trees (by-passing Feynman's Tree Theorem)

2008

We illustrate a duality relation between one-loop integrals and single-cut phase-space integrals. The duality relation is realised by a modification of the customary +i0 prescription of the Feynman propagators. The new prescription regularizing the propagators, which we write in a Lorentz covariant form, compensates for the absence of multiple-cut contributions that appear in the Feynman Tree Theorem. The duality relation can be extended to generic one-loop quantities, such as Green's functions, in any relativistic, local and unitary field theories.

High Energy Physics - TheoryNuclear and High Energy PhysicsLorentz transformationPropagatorFOS: Physical sciencesFísicaField (mathematics)Unitary stateAtomic and Molecular Physics and OpticsDuality relationsymbols.namesakeHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)symbolsFeynman diagramCovariant transformationTree (set theory)MathematicsMathematical physics
researchProduct

Comment on “Topological invariants, instantons, and the chiral anomaly on spaces with torsion”

1999

In Riemann-Cartan spacetimes with torsion only its axial covector piece $A$ couples to massive Dirac fields. Using renormalization group arguments, we show that besides the familiar Riemannian term only the Pontrjagin type four-form $dA\wedge dA$ does arise additionally in the chiral anomaly, but not the Nieh-Yan term $d^\star A$, as has been claimed in a recent paper [PRD 55, 7580 (1997)].

High Energy Physics - TheoryPhysicsChiral anomalyNuclear and High Energy PhysicsInstantonFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Renormalization groupWedge (geometry)General Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum mechanicsLinear formTorsion (algebra)Topological invariantsMathematical physicsPhysical Review D
researchProduct

Polyakov effective action from functional renormalization group equation

2010

We discuss the Polyakov effective action for a minimally coupled scalar field on a two dimensional curved space by considering a non-local covariant truncation of the effective average action. We derive the flow equation for the form factor in $\int\sqrt{g}R c_{k}(\Delta)R$, and we show how the standard result is obtained when we integrate the flow from the ultraviolet to the infrared.

High Energy Physics - TheoryPhysicsFOS: Physical sciencesGeneral Physics and AstronomyGeneral Relativity and Quantum Cosmology (gr-qc)Renormalization groupGeneral Relativity and Quantum CosmologyAction (physics)High Energy Physics - Theory (hep-th)Flow (mathematics)Functional renormalization groupCovariant transformationCurved spaceEffective actionScalar fieldMathematical physicsAnnals of Physics
researchProduct

Translational anomaly of chiral fermions in two dimensions

2019

It is well known that a quantized two-dimensional Weyl fermion coupled to gravity spoils general covariance and breaks the covariant conservation of the energy-momentum tensor. In this brief article, we point out that the quantum conservation of the momentum can also fail in flat spacetime, provided the Weyl fermion is coupled to a time-varying homogeneous electric field. This signals a quantum anomaly of the space-translation symmetry, which has not been highlighted in the literature so far.

High Energy Physics - TheoryPhysicsMomentumTheoretical physicsSpinorHigh Energy Physics - Theory (hep-th)General covarianceMinkowski spaceFOS: Physical sciencesCovariant transformationTensorAnomaly (physics)Symmetry (physics)Physical Review D
researchProduct

Frame covariant nonminimal multifield inflation

2017

We introduce a frame-covariant formalism for inflation of scalar-curvature theories by adopting a differential geometric approach which treats the scalar fields as coordinates living on a field-space manifold. This ensures that our description of inflation is both conformally and reparameterization covariant. Our formulation gives rise to extensions of the usual Hubble and potential slow-roll parameters to generalized fully frame-covariant forms, which allow us to provide manifestly frame-invariant predictions for cosmological observables, such as the tensor-to-scalar ratio $r$, the spectral indices $n_{\cal R}$ and $n_T$, their runnings $\alpha_{\cal R}$ and $\alpha_T$, the non-Gaussianity…

High Energy Physics - TheoryPhysicsNuclear and High Energy Physics010308 nuclear & particles physicsScalar (mathematics)FOS: Physical sciencesObservableGeneral Relativity and Quantum Cosmology (gr-qc)Astrophysics::Cosmology and Extragalactic AstrophysicsParameter spaceCurvature01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - Theory (hep-th)0103 physical sciencesHiggs bosonlcsh:QC770-798lcsh:Nuclear and particle physics. Atomic energy. RadioactivityCovariant transformationBoundary value problem010306 general physicsEffective actionMathematical physicsNuclear Physics B
researchProduct

Connections and geodesics in the space of metrics

2015

We argue that the exponential relation $g_{\mu\nu} = \bar{g}_{\mu\rho}\big(\mathrm{e}^h\big)^\rho{}_\nu$ is the most natural metric parametrization since it describes geodesics that follow from the basic structure of the space of metrics. The corresponding connection is derived, and its relation to the Levi-Civita connection and the Vilkovisky-DeWitt connection is discussed. We address the impact of this geometric formalism on quantum gravity applications. In particular, the exponential parametrization is appropriate for constructing covariant quantities like a reparametrization invariant effective action in a straightforward way. Furthermore, we reveal an important difference between Eucli…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsGeodesicFOS: Physical sciencesGeneral Relativity and Quantum Cosmology (gr-qc)Mathematical Physics (math-ph)General Relativity and Quantum CosmologyExponential functionCombinatoricsGeneral Relativity and Quantum CosmologyFormalism (philosophy of mathematics)High Energy Physics - Theory (hep-th)Quantum mechanicsEuclidean geometryQuantum gravityCovariant transformationEffective actionMathematical PhysicsPhysical Review D
researchProduct

Observations on the Darboux coordinates for rigid special geometry

2006

We exploit some relations which exist when (rigid) special geometry is formulated in real symplectic special coordinates $P^I=(p^\Lambda,q_\Lambda), I=1,...,2n$. The central role of the real $2n\times 2n$ matrix $M(\Re \mathcal{F},\Im \mathcal{F})$, where $\mathcal{F} = \partial_\Lambda\partial_\Sigma F$ and $F$ is the holomorphic prepotential, is elucidated in the real formalism. The property $M\Omega M=\Omega$ with $\Omega$ being the invariant symplectic form is used to prove several identities in the Darboux formulation. In this setting the matrix $M$ coincides with the (negative of the) Hessian matrix $H(S)=\frac{\partial^2 S}{\partial P^I\partial P^J}$ of a certain hamiltonian real fun…

High Energy Physics - TheoryPhysicsNuclear and High Energy PhysicsPure mathematicsHolomorphic functionFOS: Physical sciencesKähler manifoldsymbols.namesakeHigh Energy Physics - Theory (hep-th)Real-valued functionsymbolsMathematics::Differential GeometryComplex manifoldInvariant (mathematics)Hamiltonian (quantum mechanics)Mathematics::Symplectic GeometryParticle Physics - TheoryHyperkähler manifoldSymplectic geometryJournal of High Energy Physics
researchProduct