Search results for "Varietie"

showing 10 items of 72 documents

Varieties with at most quadratic growth

2010

Let V be a variety of non necessarily associative algebras over a field of characteristic zero. The growth of V is determined by the asymptotic behavior of the sequence of codimensions cn(V); n = 1; 2, … and here we study varieties of polynomial growth. Recently, for any real number a, 3 < a < 4, a variety V was constructed satisfying C1n^a < cn(V) < C2n^a; for some constants C1;C2. Motivated by this result here we try to classify all possible growth of varieties V such that cn(V) < Cn^a; with 0 < a < 2, for some constant C. We prove that if 0 < a < 1 then, for n large, cn(V) ≤ 1, whereas if V is a commutative variety and 1 < a < 2, then lim logn cn(V) = 1 o…

CombinatoricsQuadratic growthDiscrete mathematicsSettore MAT/02 - AlgebraVarieties codimension growthGeneral MathematicsZero (complex analysis)Field (mathematics)Variety (universal algebra)Algebra over a fieldMathematicsReal numberIsrael Journal of Mathematics
researchProduct

Modal Consequence Relations Extending S4.3: An Application of Projective Unification

2016

We characterize all finitary consequence relations over $\mathbf{S4.3}$ , both syntactically, by exhibiting so-called (admissible) passive rules that extend the given logic, and semantically, by providing suitable strongly adequate classes of algebras. This is achieved by applying an earlier result stating that a modal logic $L$ extending $\mathbf{S4}$ has projective unification if and only if $L$ contains $\mathbf{S4.3}$ . In particular, we show that these consequence relations enjoy the strong finite model property, and are finitely based. In this way, we extend the known results by Bull and Fine, from logics, to consequence relations. We also show that the lattice of consequence relation…

projective unificationPure mathematicsUnificationLogicFinite model property02 engineering and technology68T15Lattice (discrete subgroup)01 natural sciencesadmissible rulesComputer Science::Logic in Computer Science0202 electrical engineering electronic engineering information engineeringCountable setFinitaryHeyting algebra08C150101 mathematics03B45MathematicsDiscrete mathematics010102 general mathematicsquasivarietiesModal logicstructural completenessconsequence relations03B35Distributive property06E25$\mathbf{S4.3}$S4.3020201 artificial intelligence & image processingNotre Dame Journal of Formal Logic
researchProduct

Genetic Distinctiveness Highlights the Conservation Value of a Sicilian Manna Ash Germplasm Collection Assigned to Fraxinus angustifolia (Oleaceae)

2020

The cosmopolitan genus Fraxinus comprises about 40 species occupying several habitats in the Northern Hemisphere. With some species hybridizing and sharing genetic variants, questions remain on the species assignment of germplasm within the genus Fraxinus despite numerous species-specific assessments. A multidisciplinary approach was employed to provide a definitive insight into the genetics of an endangered Fraxinus &ldquo

0106 biological sciences0301 basic medicineGermplasmFraxinus ornusEndangered speciesBiodiversity<i>Fraxinus</i> spp.nSSRPlant ScienceFraxinus angustifoliaFraxinus010603 evolutionary biology01 natural sciencesLocal varieties03 medical and health scienceslcsh:BotanyBotanyMannaEcology Evolution Behavior and SystematicsGenetic diversityEcologybiologyFraxinus spp.food and beveragescpSSR15. Life on landMorphological traitsEx situ conservationbiology.organism_classificationlcsh:QK1-989030104 developmental biologylocal varieties nSSR[SDE]Environmental SciencesCytometryPlants
researchProduct

Surfaces of minimal degree of tame representation type and mutations of Cohen–Macaulay modules

2017

We provide two examples of smooth projective surfaces of tame CM type, by showing that any parameter space of isomorphism classes of indecomposable ACM bundles with fixed rank and determinant on a rational quartic scroll in projective 5-space is either a single point or a projective line. For surfaces of minimal degree and wild CM type, we classify rigid Ulrich bundles as Fibonacci extensions. For the rational normal scrolls S(2,3) and S(3,3), a complete classification of rigid ACM bundles is given in terms of the action of the braid group in three strands.

[ MATH ] Mathematics [math]Pure mathematicsFibonacci numberGeneral MathematicsType (model theory)Rank (differential topology)Commutative Algebra (math.AC)01 natural sciencesMathematics - Algebraic GeometryACM bundlesVarieties of minimal degreeMathematics::Algebraic Geometry0103 physical sciencesFOS: MathematicsMathematics (all)Rings0101 mathematics[MATH]Mathematics [math]Algebraic Geometry (math.AG)MathematicsDiscrete mathematics14F05 13C14 14J60 16G60010102 general mathematicsVarietiesMCM modulesACM bundles; MCM modules; Tame CM type; Ulrich bundles; Varieties of minimal degree; Mathematics (all)Ulrich bundlesMathematics - Commutative AlgebraQuintic functionElliptic curveTame CM typeProjective lineBundles010307 mathematical physicsIsomorphismIndecomposable moduleMSC: 14F05; 13C14; 14J60; 16G60
researchProduct

Totally new and pretty awesome : Amplifier–adjective bigrams in GloWbE

2017

Abstract Previous work on adjectival intensification (e.g. very good , so glad , really great ) has mostly focussed on the adverbs in question, showing that different (native) varieties of English display distinctive preferences concerning intensifier choice. However, little is known so far about the role that intensifier-adjective units (bigrams) play. The present paper offers a first contribution to fill this research gap by focussing on a data-driven approach to (mostly) high-frequency bigrams and their collocational behaviour in the Corpus of Global Web-based English (GloWbE). Asymmetric and symmetric measures are employed to establish attraction and repulsion between adverb and adjecti…

060201 languages & linguisticsLinguistics and LanguageBigram06 humanities and the artsAdverbIntensifierAttractionLanguage and LinguisticsLinguisticsVarieties of English030507 speech-language pathology & audiology03 medical and health sciences0602 languages and literatureSociology0305 other medical scienceAdjectiveLingua
researchProduct

Triple planes with $p_g=q=0$

2019

We show that general triple planes with p_g=q=0 belong to at most 12 families, that we call surfaces of type I,..., XII, and we prove that the corresponding Tschirnhausen bundle is direct sum of two line bundles in cases I, II, III, whereas is a rank 2 Steiner bundle in the remaining cases. We also provide existence results and explicit constructions for surfaces of type I,..., VII, recovering all classical examples and discovering several new ones. In particular, triple planes of type VII provide counterexamples to a wrong claim made in 1942 by Bronowski.

Discrete mathematicsSteiner bundleApplied MathematicsGeneral Mathematics010102 general mathematicsprojective varietiesspaceadjunction theorysurfaces01 natural sciences14E20bundlesunstable hyperplanesMathematics - Algebraic GeometryTriple plane0103 physical sciencesFOS: Mathematics010307 mathematical physicsarrangements[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]0101 mathematicsMSc: Primary 14E20 14J60Algebraic Geometry (math.AG)Mathematicscovers
researchProduct

Etude de certaines familles de variétés algébriques munies d'une action de groupe algébrique

2021

groupe de Cremonastructure réelle équivariante[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]variétés de complexité unthéorie de MoriCremona groupMori theoryActions de groupes algébriquesthéorie de Luna-Vustcomplexity-one varietiesAlgebraic group actionsanneau de Coxequivariant real structureLuna-Vust theory[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Cox ring
researchProduct

Subvarieties of the Grassmannian $G(1,N)$ with small secant variety

2002

Grassmannians secant varieties projectionsSettore MAT/03 - Geometria
researchProduct

Homological Projective Duality for Determinantal Varieties

2016

In this paper we prove Homological Projective Duality for crepant categorical resolutions of several classes of linear determinantal varieties. By this we mean varieties that are cut out by the minors of a given rank of a n x m matrix of linear forms on a given projective space. As applications, we obtain pairs of derived-equivalent Calabi-Yau manifolds, and address a question by A. Bondal asking whether the derived category of any smooth projective variety can be fully faithfully embedded in the derived category of a smooth Fano variety. Moreover we discuss the relation between rationality and categorical representability in codimension two for determinantal varieties.

Pure mathematicsGeneral MathematicsHomological projective dualitySemi-orthogonal decompositionsDeterminantal varieties01 natural sciencesDerived categoryMathematics - Algebraic GeometryMathematics::Algebraic GeometryMathematics::Category Theory0103 physical sciencesFOS: MathematicsProjective spaceCategory Theory (math.CT)0101 mathematicsAlgebraic Geometry (math.AG)Categorical variableMathematics::Symplectic GeometryPencil (mathematics)Projective varietyComputingMilieux_MISCELLANEOUSMathematicsDiscrete mathematicsDerived category010308 nuclear & particles physicsProjective varietiesComplex projective space010102 general mathematicsFano varietyMathematics - Category TheoryCodimension[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]Rationality questions[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]
researchProduct

On Almost Nilpotent Varieties of Linear Algebras

2020

A variety \(\mathcal {V}\) is almost nilpotent if it is not nilpotent but all proper subvarieties are nilpotent. Here we present the results obtained in recent years about almost nilpotent varieties and their classification.

Mathematics::Group TheoryNilpotentPure mathematicsVarietiesMathematics::Rings and AlgebrasCodimension growthVariety (universal algebra)Mathematics::Representation TheoryAlmost nilpotentMathematics
researchProduct