Search results for "Viability assay"

showing 10 items of 279 documents

Activity of the α-glucoside transporter Agt1 in Saccharomyces cerevisiae cells during dehydration-rehydration events

2018

Microbial cells can enter a state of anhydrobiosis under desiccating conditions. One of the main determinants of viability during dehydration-rehydration cycles is structural integrity of the plasma membrane. Whereas much is known about phase transitions of the lipid bilayer, there is a paucity of information on changes in activity of plasma membrane proteins during dehydration-rehydration events. We selected the α-glucoside transporter Agt1 to gain insights into stress mechanisms/responses and ecophysiology during anhydrobiosis. As intracellular water content of S. cerevisiae strain 14 (a strain with moderate tolerance to dehydration-rehydration) was reduced to 1.5 g water/g dry weight, th…

0301 basic medicineSaccharomyces cerevisiae ProteinsMonosaccharide Transport ProteinsEvolution030106 microbiologySaccharomyces cerevisiaeSaccharomyces cerevisiaeDehydration-rehydration03 medical and health sciencesGlucosidesBehavior and Systematicsα-Glucoside transporterMembrane proteinsGeneticsViability assayDesiccationLipid bilayerEcology Evolution Behavior and SystematicsMicrobial ViabilitySymportersbiologyStrain (chemistry)EcologyCell MembraneBiological TransportTransporterbiology.organism_classificationAnhydrobiosisYeastYeast030104 developmental biologyInfectious DiseasesBiochemistryMembrane proteinAnhydrobiosis; Dehydration-rehydration; Membrane proteins; Yeast; α-Glucoside transporter; Ecology Evolution Behavior and Systematics; Genetics; Infectious DiseasesIntracellular
researchProduct

Optimized tableting for extremely oxygen-sensitive probiotics using direct compression

2018

International audience; Faecalibacterium prausnitzii was previously recognized for its intestinal anti-inflammatory activities and it has been shown less abundant in patients with chronic intestinal diseases. However, the main problems encountered in the use of this interesting anaerobic microorganism are firstly its high sensitivity to the oxygen and secondly, its ability to reach the large intestine alive as targeted site. The aim of this study was to investigate the effect of direct compression on the viability of this probiotic strain after different compression pressure and storage using three different excipients (MCC, HPMC and HPMCP). The effect of compression process on cell viabili…

0301 basic medicineTime FactorsCell SurvivalChemistry PharmaceuticalDrug Compounding[ SDV.AEN ] Life Sciences [q-bio]/Food and NutritionShear forceDirect compressionPharmaceutical ScienceFaecalibacterium prausnitziiStorage030226 pharmacology & pharmacylaw.inventionExcipients03 medical and health sciencesProbioticTableting0302 clinical medicinelaw[SDV.IDA]Life Sciences [q-bio]/Food engineeringPressureRelative humidity[SPI.GPROC]Engineering Sciences [physics]/Chemical and Process EngineeringViability assayFood scienceF. prausnitziibiologyFaecalibacterium prausnitziiChemistryProbioticsTemperature[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringHumidityCompression (physics)biology.organism_classificationOxygen030104 developmental biologyViabilityAnaerobic exercise[SDV.AEN]Life Sciences [q-bio]/Food and NutritionPre-consolidationTablets
researchProduct

Optimization of electrospraying conditions for the microencapsulation of probiotics and evaluation of their resistance during storage and in-vitro di…

2016

Electrospraying has recently emerged as a novel microencapsulation technique with potential for the protection of probiotics. However, research efforts are still needed to minimize the viability loss observed during the processing of sensitive strains, and to maximize productivity. The aim of the present work was the optimization of the electrospraying conditions for the microencapsulation of a model probiotic microorganism, Lactobacillus plantarum, within a whey protein concentrate matrix. In a pre-optimization step, the convenience of encapsulating fresh culture instead of freeze-dried bacteria was established. Additionally, a surface response methodology was used to study the effect of t…

0301 basic medicineWhey proteinmedicine.medical_treatmentMicroorganismProbioticlaw.invention03 medical and health sciencesProbiotic0404 agricultural biotechnologylawmedicineViability assayFood scienceElectrospraying030109 nutrition & dieteticsbiologyChemistryPrebiotic04 agricultural and veterinary sciencesIn vitro digestionbiology.organism_classification040401 food scienceWhey proteinSurface response methodologyL. plantarumEncapsulationLactobacillus plantarumFood Science
researchProduct

GDF11 exhibits tumor suppressive properties in hepatocellular carcinoma cells by restricting clonal expansion and invasion.

2019

Growth differentiation factor 11 (GDF11) has been characterized as a key regulator of differentiation in cells that retain stemness features, despite some controversies in age-related studies. GDF11 has been poorly investigated in cancer, particularly in those with stemness capacity, such as hepatocellular carcinoma (HCC), one of the most aggressive cancers worldwide. Here, we focused on investigating the effects of GDF11 in liver cancer cells. GDF11 treatment significantly reduced proliferation, colony and spheroid formation in HCC cell lines. Consistently, down-regulation of CDK6, cyclin D1, cyclin A, and concomitant upregulation of p27 was observed after 24 h of treatment. Interestingly,…

0301 basic medicine[SDV]Life Sciences [q-bio]Cyclin ACellChick EmbryoChorioallantoic Membrane0302 clinical medicineCell MovementCyclin D1HCCbiologyNeovascularization PathologicCell DifferentiationHep G2 CellsCell cycleCadherinsHuh7 cells3. Good health[SDV] Life Sciences [q-bio]Gene Expression Regulation NeoplasticGrowth Differentiation Factorsmedicine.anatomical_structure030220 oncology & carcinogenesisBone Morphogenetic ProteinsMolecular MedicineLiver cancerCyclin-Dependent Kinase Inhibitor p27Signal Transduction[SDV.CAN]Life Sciences [q-bio]/CancerCyclin ACell cycleHep3B cells03 medical and health sciencesCyclin D1Downregulation and upregulation[SDV.CAN] Life Sciences [q-bio]/CancerAntigens CDCell Line TumorOccludinSpheroids CellularmedicineAnimalsHumansViability assayMolecular BiologyCell Proliferation[SDV.MHEP.HEG]Life Sciences [q-bio]/Human health and pathology/Hépatology and GastroenterologyCyclin-Dependent Kinase 6[SDV.MHEP.HEG] Life Sciences [q-bio]/Human health and pathology/Hépatology and Gastroenterology030104 developmental biologyCell cultureGDF11biology.proteinCancer researchCyclin-dependent kinase 6Snail Family Transcription FactorsBiochimica et biophysica acta. Molecular basis of disease
researchProduct

The histone deacetylase inhibitor SAHA induces HSP60 nitration and its extracellular release by exosomal vesicles in human lung-derived carcinoma cel…

2015

// Claudia Campanella 1, 2, * , Antonella D'Anneo 3, * , Antonella Marino Gammazza 1, 2, * , Celeste Caruso Bavisotto 1, 2 , Rosario Barone 1, 2 , Sonia Emanuele 4 , Filippa Lo Cascio 1 , Emanuele Mocciaro 1 , Stefano Fais 5 , Everly Conway De Macario 6 , Alberto J.L. Macario 2, 6 , Francesco Cappello 1, 2 , Marianna Lauricella 4 1 Department of Experimental Biomedicine and Clinical Neurosciences, Section of Human Anatomy “Emerico Luna”, University of Palermo, Palermo, Italy 2 Euro-Mediterranean Institute of Science and Technology, Palermo, Italy 3 Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, Laboratory of Biochemistry, University of Palermo, Palermo, Ita…

0301 basic medicineanimal structuresLung Neoplasmsmedicine.drug_classCell SurvivalNitrosationExosomes; Histone deacetylase inhibitor; HSP60; Oxidative stress; SAHAchemical and pharmacologic phenomenaAntineoplastic AgentsApoptosisexosomesBiologyHydroxamic Acidscomplex mixturesMitochondrial Proteins03 medical and health sciencesCell Line TumorSettore BIO/10 - BiochimicamedicineHumansoxidative stressSecretionViability assayCell ProliferationVorinostatHistone deacetylase inhibitorCell growthSettore BIO/16 - Anatomia UmanaHistone deacetylase inhibitorfungiSAHAChaperonin 60MicrovesiclesHistone Deacetylase InhibitorsExosome030104 developmental biologyOncologyApoptosisImmunologyCancer researchOxidative streHSP60Histone deacetylaseProtein Processing Post-TranslationalHSP60Research Paper
researchProduct

Cytotoxic Potential of the Coelomic Fluid Extracted from the Sea Cucumber Holothuria tubulosa against Triple-Negative MDA-MB231 Breast Cancer Cells

2019

Growing evidence has demonstrated that the extracts of different holothurian species exert beneficial effects on human health. Triple negative breast cancers (TNBC) are highly malignant tumors that present a poor prognosis due to the lack of effective targeted therapies. In the attempt to identify novel compounds that might counteract TNBC cell growth, we studied the effect of the exposure of the TNBC cell line MDA-MB231 to total and filtered aqueous extracts of the coelomic fluid obtained from the sea cucumber Holoturia tubulosa, a widespread species in the Mediterranean Sea. In particular, we examined cell viability and proliferative behaviour, cell cycle distribution, apoptosis, autophag…

0301 basic medicineautophagyCellSettore BIO/05 - ZoologiaBiologyGeneral Biochemistry Genetics and Molecular Biology03 medical and health sciences0302 clinical medicinebreast cancermitochondrial functionOrganellemedicineCytotoxic T cellViability assay<i>Holothuria tubulosa</i>Settore BIO/06 - Anatomia Comparata E Citologialcsh:QH301-705.5cell viabilityGeneral Immunology and MicrobiologyHolothuria tubulosaAutophagyCell cyclebiology.organism_classificationHolothuria tubulosa030104 developmental biologymedicine.anatomical_structurelcsh:Biology (General)Apoptosis030220 oncology & carcinogenesisCancer researchcell cycleGeneral Agricultural and Biological Sciencescoelomic fluid
researchProduct

Loss of MCL1 function sensitizes the MDA-MB-231 breast cancer cells to rh-TRAIL by increasing DR4 levels.

2019

Triple-negative breast cancer (TNBC) is a form of BC characterized by high aggressiveness and therapy resistance probably determined by cancer stem cells. MCL1 is an antiapoptotic Bcl-2 family member that could limit the efficacy of anticancer agents as recombinant human tumor necrosis factor related apoptosis-inducing ligand (rh-TRAIL). Here, we investigated MCL1 expression in TNBC tissues and cells. We found MCL1 differentially expressed (upregulated or downregulated) in TNBC tissues. Furthermore, in comparison to the human mammary epithelial cells, we found that MDA-MB-231 cells show similar messenger RNA levels but higher MCL1 protein levels, whereas it resulted downregulated in MDA-MB-…

0301 basic medicinecancer stem cellIndolesPhysiologyCell SurvivalClinical BiochemistryCellPopulationApoptosisTNF-Related Apoptosis-Inducing Ligand03 medical and health sciences0302 clinical medicineCancer stem cellSettore BIO/10 - BiochimicaCell Line Tumormedicinerh-TRAILBiomarkers TumorGene silencingHumansViability assayGene SilencingeducationCell ShapeCell ProliferationMembrane Potential Mitochondrialeducation.field_of_studySulfonamidesChemistryCell growthCell CycleCell BiologyCell cycleRecombinant ProteinsGene Expression Regulation NeoplasticReceptors TNF-Related Apoptosis-Inducing Ligand030104 developmental biologymedicine.anatomical_structureMCL1ApoptosisDR4 receptor030220 oncology & carcinogenesisCancer researchtriple-negative breast cancerMyeloid Cell Leukemia Sequence 1 ProteinJournal of cellular physiology
researchProduct

Photocatalytic Activity of Polymer Nanoparticles Modulates Intracellular Calcium Dynamics and Reactive Oxygen Species in HEK-293 Cells

2018

Optical modulation of living cells activity by light-absorbing exogenous materials is gaining increasing interest, due to the possibility both to achieve high spatial and temporal resolution with a minimally invasive and reversible technique and to avoid the need of viral transfection with light-sensitive proteins. In this context, conjugated polymers represent ideal candidates for photo-transduction, due to their excellent optoelectronic and biocompatibility properties. In this work, we demonstrate that organic polymer nanoparticles, based on poly(3-hexylthiophene) conjugated polymer, establish a functional interaction with an in vitro cell model (Human Embryonic Kidney cells, HEK-293). Th…

0301 basic medicineconjugated polymerHistologylcsh:BiotechnologyCellBiomedical EngineeringBioengineeringContext (language use)02 engineering and technologyCalcium in biology03 medical and health sciencesCa2+ imaginglcsh:TP248.13-248.65medicineViability assaybio-organic electronicsOriginal Researchreactive oxygen specieschemistry.chemical_classificationReactive oxygen speciesorganic semiconductorHEK 293 cellsBioengineering and BiotechnologyPhotocatalytic ActivityTransfection021001 nanoscience & nanotechnologyConjugated Polymer NanoparticlesCytosol030104 developmental biologymedicine.anatomical_structurechemistryBiophysicsIntracellular Calcium Dynamicsphotomodulationlight0210 nano-technologycell optical stimulationBiotechnologyFrontiers in Bioengineering and Biotechnology
researchProduct

Cytoprotective Effects of Dinitrosyl Iron Complexes on Viability of Human Fibroblasts and Cardiomyocytes

2019

Nitric oxide (NO) is an important signaling molecule that plays a key role in maintaining vascular homeostasis. Dinitrosyl iron complexes (DNICs) generating NO are widely used to treat cardiovascular diseases. However, the involvement of DNICs in the metabolic processes of the cell, their protective properties in doxorubicin-induced toxicity remain to be clarified. Here, we found that novel class of mononuclear DNICs with functional sulfur-containing ligands enhanced the cell viability of human lung fibroblasts and rat cardiomyocytes. Moreover, DNICs demonstrated remarkable protection against doxorubicin-induced toxicity in fibroblasts and in rat cardiomyocytes (H9c2 cells). Data revealed t…

0301 basic medicinedonors nitric oxideCellOxidative phosphorylationdinitrosyl iron complexesheart diseaseMitochondrionNitric oxide03 medical and health scienceschemistry.chemical_compound0302 clinical medicinemedicinePharmacology (medical)Viability assayInner mitochondrial membranecell viabilityOriginal Researchchemistry.chemical_classificationPharmacologyReactive oxygen specieslcsh:RM1-950GlutathioneCell biology030104 developmental biologymedicine.anatomical_structurelcsh:Therapeutics. Pharmacologychemistry030220 oncology & carcinogenesismembrane potentialFrontiers in Pharmacology
researchProduct

Anticancer properties of 5Z-(4- fuorobenzylidene)-2-(4- hydroxyphenylamino)-thiazol-4-one

2019

Abstract4-thiazolidinones, which are privileged structures in medicinal chemistry, comprise the well-known class of heterocycles and are a source of new drug-like compounds. Undoubtedly, the 5-bulky-substituted-2,4-thiazolidinediones - a class of antihyperglycemic glitazones, which are peroxisome proliferator-activated receptor gamma (PPARγ) agonists, are the most described group among them. As there are various chemically distinct 4-thiazolidinones, different subtypes have been selected for studies; however, their main pharmacological profiles are similar. The aim of this study was to evaluate the anticancer activity of 5Z-(4-fluorobenzylidene)-2-(4-hydroxyphenylamino)-thiazol-4-one (Les-2…

0301 basic medicinelcsh:MedicineAntineoplastic AgentsApoptosisDrug developmentArticle03 medical and health scienceschemistry.chemical_compound0302 clinical medicineCell Line TumorLactate dehydrogenaseHumansViability assaylcsh:ScienceCytotoxicityReceptorchemistry.chemical_classificationReactive oxygen speciesMultidisciplinaryDose-Response Relationship DrugL-Lactate DehydrogenaseMolecular medicineCaspase 3lcsh:RMetabolismPeroxisomeThiazoles030104 developmental biologychemistryBiochemistryA549 CellsPreclinical researchCell culturelcsh:QCaco-2 CellsReactive Oxygen Species030217 neurology & neurosurgeryScientific Reports
researchProduct