Search results for "Video processing"
showing 10 items of 56 documents
Video indexing using optical flow field
2002
The increasing development of advanced multimedia applications requires new technologies for organizing and retrieving by content databases of digital video. Several content based features (color, texture, motion, etc.) are needed to perform a reliable content based retrieval. We present a method for automatic motion based video indexing and retrieval. A prototypal system has been developed to prove the validity of our approach. Our system automatically splits a video into a sequence of shots, extracts a few representative frames (said r-frames) from each shot and computes some motion based features related to the optical flow field. Motion based queries are then performed either in a quali…
Real-Time Photoplethysmography Imaging System
2011
Real-time non-contact photoplethysmography imaging (PPGI) system for high-resolution blood perfusion mapping in human skin has been proposed. The PPGI system comprises of LED lamp, webcam and computer with video processing software. The purpose of this study is to evaluate the reliability of the PPGI system when measuring blood perfusion. The validation study of PPGI and laser-Doppler perfusion imager (LDPI) was performed during local warming of palm skin. Results showed that the amplitude of PPGI increases immediately after warming and well correlated with the mean LDPI amplitude (R=0.92+-0.03, p<0.0001). We found that PPGI technique has good potential for non-contact monitoring of blood p…
Cross-Sensor Adversarial Domain Adaptation of Landsat-8 and Proba-V images for Cloud Detection
2021
The number of Earth observation satellites carrying optical sensors with similar characteristics is constantly growing. Despite their similarities and the potential synergies among them, derived satellite products are often developed for each sensor independently. Differences in retrieved radiances lead to significant drops in accuracy, which hampers knowledge and information sharing across sensors. This is particularly harmful for machine learning algorithms, since gathering new ground truth data to train models for each sensor is costly and requires experienced manpower. In this work, we propose a domain adaptation transformation to reduce the statistical differences between images of two…
Enforcing Perceptual Consistency on Generative Adversarial Networks by Using the Normalised Laplacian Pyramid Distance
2019
In recent years there has been a growing interest in image generation through deep learning. While an important part of the evaluation of the generated images usually involves visual inspection, the inclusion of human perception as a factor in the training process is often overlooked. In this paper we propose an alternative perceptual regulariser for image-to-image translation using conditional generative adversarial networks (cGANs). To do so automatically (avoiding visual inspection), we use the Normalised Laplacian Pyramid Distance (NLPD) to measure the perceptual similarity between the generated image and the original image. The NLPD is based on the principle of normalising the value of…
Segmentation-Free Estimation of Aortic Diameters from MRI Using Deep Learning
2020
Accurate and reproducible measurements of the aortic diameters are crucial for the diagnosis of cardiovascular diseases and for therapeutic decision making. Currently, these measurements are manually performed by healthcare professionals, being time consuming, highly variable, and suffering from lack of reproducibility. In this work we propose a supervised deep-learning method for the direct estimation of aortic diameters. The approach is devised and tested over 100 magnetic resonance angiography scans without contrast agent. All data was expert-annotated at six aortic locations typically used in clinical practice. Our approach makes use of a 3D+2D convolutional neural network (CNN) that ta…
Active Learning Methods for Efficient Hybrid Biophysical Variable Retrieval
2016
Kernel-based machine learning regression algorithms (MLRAs) are potentially powerful methods for being implemented into operational biophysical variable retrieval schemes. However, they face difficulties in coping with large training data sets. With the increasing amount of optical remote sensing data made available for analysis and the possibility of using a large amount of simulated data from radiative transfer models (RTMs) to train kernel MLRAs, efficient data reduction techniques will need to be implemented. Active learning (AL) methods enable to select the most informative samples in a data set. This letter introduces six AL methods for achieving optimized biophysical variable estimat…
Image inpainting using directional wavelet packets originating from polynomial splines
2020
The paper presents a new algorithm for the image inpainting problem. The algorithm is using a recently designed versatile library of quasi-analytic complex-valued wavelet packets (qWPs) which originate from polynomial splines of arbitrary orders. Tensor products of 1D qWPs provide a diversity of 2D qWPs oriented in multiple directions. For example, a set of the fourth-level qWPs comprises 62 different directions. The properties of the presented qWPs such as refined frequency resolution, directionality of waveforms with unlimited number of orientations, (anti-)symmetry of waveforms and windowed oscillating structure of waveforms with a variety of frequencies, make them efficient in image pro…
hidden markov random fields and cuckoo search method for medical image segmentation
2020
Segmentation of medical images is an essential part in the process of diagnostics. Physicians require an automatic, robust and valid results. Hidden Markov Random Fields (HMRF) provide powerful model. This latter models the segmentation problem as the minimization of an energy function. Cuckoo search (CS) algorithm is one of the recent nature-inspired meta-heuristic algorithms. It has shown its efficiency in many engineering optimization problems. In this paper, we use three cuckoo search algorithm to achieve medical image segmentation.
Graph Embedding via High Dimensional Model Representation for Hyperspectral Images
2021
Learning the manifold structure of remote sensing images is of paramount relevance for modeling and understanding processes, as well as to encapsulate the high dimensionality in a reduced set of informative features for subsequent classification, regression, or unmixing. Manifold learning methods have shown excellent performance to deal with hyperspectral image (HSI) analysis but, unless specifically designed, they cannot provide an explicit embedding map readily applicable to out-of-sample data. A common assumption to deal with the problem is that the transformation between the high-dimensional input space and the (typically low) latent space is linear. This is a particularly strong assump…
COVID-19: A Survey on Public Medical Imaging Data Resources
2020
This regularly updated survey provides an overview of public resources that offer medical images and metadata of COVID-19 cases. The purpose of this survey is to simplify the access to open COVID-19 image data resources for all scientists currently working on the coronavirus crisis.