Search results for "Virus Replication"

showing 10 items of 199 documents

ICTV Virus Taxonomy Profile: Pseudoviridae

2021

Pseudoviridae is a family of reverse-transcribing viruses with long terminal repeats (LTRs) belonging to the order Ortervirales. Pseudoviruses are commonly found integrated in the genomes of diverse plants, fungi and animals and are broadly known as Ty1/Copia LTR retrotransposons. Inside the cell, they form icosahedral virus particles, but unlike most other viruses, do not have an extracellular phase. This is a summary of the ICTV Report on the family Pseudoviridae, which is available at ictv.global/report/pseudoviridae.

0301 basic medicineINTRetroelementstaxonomy. Abbreviations: CPvirusesLTR030106 microbiologynucleocapsidRetrotransposonGenome ViralVirus Replicationvirus-like particlesGenomeVirusPRRTPPT03 medical and health sciencestaxonomyVirologyVLPRetrovirusesreverse transcriptaseICTV ReportcapsidRNA VirusesPBSVirus classificationbiologyAnimalfungiTerminal Repeat SequencesPseudoviridaeproteasepolypurine tractbiology.organism_classificationVirologyLong terminal repeatlong terminal repeat030104 developmental biology[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/VirologyRNA ViralintegraseRHNCIctv Virus Taxonomy Profileribonuclease HPseudoviridaeprimer binding site
researchProduct

Regulation of kynurenine biosynthesis during influenza virus infection.

2017

Influenza A viruses (IAVs) remain serious threats to public health because of the shortage of effective means of control. Developing more effective virus control modalities requires better understanding of virus–host interactions. It has previously been shown that IAV induces the production of kynurenine, which suppresses T-cell responses, enhances pain hypersensitivity and disturbs behaviour in infected animals. However, the regulation of kynurenine biosynthesis during IAV infection remains elusive. Here we showed that IAV infection induced expression of interferons (IFNs), which upregulated production of indoleamine-2,3-dioxygenase (IDO1), which catalysed the kynurenine biosynthesis. Furt…

0301 basic medicineIndoleshost-pathogen interactionViral Nonstructural Proteinsmedicine.disease_causeVirus ReplicationBiochemistryinfluenza viruschemistry.chemical_compoundMiceInfluenza A Virus H1N1 SubtypeInterferonOximesinnate immunityLungOxazolesKynurenineRegulation of gene expressionMice Inbred BALB CSulfonamidesTryptophaninterferon3. Good healthHost-Pathogen InteractionsFemaleMetabolic Networks and Pathwaysmedicine.drugHost–pathogen interaction030106 microbiologyPrimary Cell CultureBiologyta3111Antiviral AgentsVirus03 medical and health sciences3-dioxygenase (IDO1)Orthomyxoviridae InfectionsmedicineAnimalsHumansImmunologic FactorsIndoleamine-Pyrrole 23-DioxygenasePyrrolesMolecular BiologyInnate immune systemta1184Macrophagesta1183ta1182Cell BiologyVirologyindoleamine-pyrrole 2Thiazoles030104 developmental biologyHerpes simplex virusViral replicationchemistryGene Expression RegulationInterferonsTranscriptomeKynurenineThe FEBS journal
researchProduct

Collective properties of viral infectivity

2018

Individual virions typically fail to infect cells. Such decoupling between virions and infectious units is most evident in multicomponent and other segmented viruses, but is also frequent in non-segmented viruses. Despite being a well-known observation, the causes and implications of low single-virion infectivity often remain unclear. In principle, this can originate from intrinsic genetic and/or structural virion defects, but also from host infection barriers that limit early viral proliferation. Hence, viruses may have evolved strategies to increase the per-virion likelihood of establishing successful infections. This can be achieved by adopting spread modes that elevate the multiplicity …

0301 basic medicineInfectivityvirusesBiologyVirus Physiological PhenomenaCellular levelbiochemical phenomena metabolism and nutritionVirus InternalizationVirus ReplicationVirologyMicrovesiclesDefective virusArticle03 medical and health sciences030104 developmental biologyMultiplicity of infectionViral replicationVirion bindingVirus DiseasesVirologyMicrobial InteractionsVirus Physiological Phenomena
researchProduct

Myeloid Cells Restrict MCMV and Drive Stress- Induced Extramedullary Hematopoiesis through STAT1

2019

Cytomegalovirus (CMV) has a high prevalence worldwide, is often fatal for immunocompromised patients, and causes bone marrow suppression. Deficiency of signal transducer and activator of transcription 1 (STAT1) results in severely impaired antiviral immunity. We have used cell- type restricted deletion of Stat1 to determine the importance of myeloid cell activity for the defense against murine CMV (MCMV). We show that myeloid STAT1 limits MCMV burden and infection- associated pathology in the spleen but does not affect ultimate clearance of infection. Unexpectedly, we found an essential role of myeloid STAT1 in the induction of extramedullary hematopoiesis (EMH). The EMH- promoting function…

0301 basic medicineMaleMuromegalovirusMyeloidIFN-II receptorReceptor Interferon alpha-betamonocytes signal transducer and activator of transcription Herpesviridae IFN-I receptor IFN-II receptor L-27 receptor TLR9 agonistmedicine.disease_causeVirus Replication0302 clinical medicineTLR9 agonistMyeloid CellsSTAT1Cells CulturedHerpesviridaeReceptors Interferonsignal transducer and activator of transcriptionvirus diseasesIL-27 receptorHerpesviridae InfectionsExtramedullary hematopoiesisKiller Cells NaturalHaematopoiesismedicine.anatomical_structureSTAT1 Transcription FactorBone marrow suppressionHematopoiesis ExtramedullaryFemalemonocytesBIOMEDICINA I ZDRAVSTVO. Temeljne medicinske znanosti.SpleenBiologyGeneral Biochemistry Genetics and Molecular BiologyHerpesviridaeArticle03 medical and health sciencesStress PhysiologicalmedicineAnimalsBIOMEDICINE AND HEALTHCARE. Basic Medical Sciences.Receptors Interleukinmedicine.diseaseMice Inbred C57BL030104 developmental biologyImmunologySTAT proteinbiology.protein030217 neurology & neurosurgeryGene DeletionSpleenIFN-I receptor
researchProduct

A Naturally Occurring Antibody Fragment Neutralizes Infectivity of Diverse Infectious Agents

2016

AbstractA phosphorylated peptide, named K40H, derived from the constant region of IgMs was detected in human serum by liquid chromatography coupled to high-resolution mass spectrometry. Synthetic K40H proved to exert a potent in vitro activity against fungal pathogens, and to inhibit HIV-1 replication in vitro and ex vivo. It also showed a therapeutic effect against an experimental infection by Candida albicans in the invertebrate model Galleria mellonella. K40H represents the proof of concept of the innate role that naturally occurring antibody fragments may exert against infectious agents, shedding a new light upon the posthumous role of antibodies and opening a new scenario on the multif…

0301 basic medicineMicrobial Sensitivity TestsVirus ReplicationArticleMass SpectrometryMicrobiology03 medical and health sciencesAnti-Infective AgentsCandida albicansHumansPhosphorylationCandida albicansInfectivityMultidisciplinaryInnate immune system030102 biochemistry & molecular biologybiologybiology.organism_classificationVirologyPeptide FragmentsIn vitroImmunoglobulin Fc FragmentsGalleria mellonella030104 developmental biologyImmunoglobulin MHumoral immunityHIV-1biology.proteinAntibodyEx vivoChromatography LiquidScientific Reports
researchProduct

Highly heterogeneous mutation rates in the hepatitis C virus genome.

2016

Spontaneous mutations are the ultimate source of genetic variation and have a prominent role in evolution. RNA viruses such as hepatitis C virus (HCV) have extremely high mutation rates, but these rates have been inferred from a minute fraction of genome sites, limiting our view of how RNA viruses create diversity. Here, by applying high-fidelity ultradeep sequencing to a modified replicon system, we scored >15,000 spontaneous mutations, encompassing more than 90% of the HCV genome. This revealed >1,000-fold differences in mutability across genome sites, with extreme variations even between adjacent nucleotides. We identify base composition, the presence of high- and low-mutation clusters a…

0301 basic medicineMicrobiology (medical)Mutation rateGenotypeHepatitis C virusImmunologyGenome ViralHepacivirusBiologymedicine.disease_causeVirus ReplicationApplied Microbiology and BiotechnologyMicrobiologyGenome03 medical and health sciencesMutation RateMolecular evolutionGenetic variationGeneticsmedicineHumansTransversionGenetics030102 biochemistry & molecular biologyNucleotidesGenetic VariationHigh-Throughput Nucleotide SequencingCell BiologyResistance mutationHepatitis C030104 developmental biologyViral replicationRNA ViralRepliconNature microbiology
researchProduct

Murine cytomegalovirus (CMV) infection via the intranasal route offers a robust model of immunity upon mucosal CMV infection

2016

Cytomegalovirus (CMV) is a ubiquitous virus, causing the most common congenital infection in humans, yet a vaccine against this virus is not available. Experimental studies of immunity against CMV in animal models of infection, such as the infection of mice with mouse CMV (MCMV), have relied mainly on parenteral infection protocols, although the virus naturally transmits by mucosal routes via body fluids. To characterize the biology of infections by mucosal routes, we compared the kinetics of virus replication, latent viral load and CD8 T-cell responses in lymphoid organs upon experimental intranasal (targeting the respiratory tract) and intragastric (targeting the digestive tract) infectio…

0301 basic medicineMuromegalovirusMice 129 StrainCongenital cytomegalovirus infectionSpleenCD8-Positive T-LymphocytesBiologyVirus ReplicationVirus03 medical and health sciencesImmunityVirologyVirus latencymedicineAnimalsImmunity MucosalMice Inbred BALB CAnimal StructuresViral Loadmedicine.diseaseVirologyVirus Latency030104 developmental biologymedicine.anatomical_structureLymphatic systemViral replicationModels AnimalImmunologyFemaleViral load
researchProduct

Different rates of spontaneous mutation of chloroplastic and nuclear viroids as determined by high-fidelity ultra-deep sequencing

2017

[EN] Mutation rates vary by orders of magnitude across biological systems, being higher for simpler genomes. The simplest known genomes correspond to viroids, subviral plant replicons constituted by circular non-coding RNAs of few hundred bases. Previous work has revealed an extremely high mutation rate for chrysanthemum chlorotic mottle viroid, a chloroplastreplicating viroid. However, whether this is a general feature of viroids remains unclear. Here, we have used high-fidelity ultra-deep sequencing to determine the mutation rate in a common host (eggplant) of two viroids, each representative of one family: the chloroplastic eggplant latent viroid (ELVd, Avsunviroidae) and the nuclear pot…

0301 basic medicineMutation rateChloroplastsViroidvirusesPospiviroidaeArtificial Gene Amplification and ExtensionPlant ScienceSelf-CleavageVirus ReplicationBiochemistryPolymerase Chain ReactionGenomeDatabase and Informatics MethodsSequencing techniquesRibozymeNucleic AcidsRibozymesBiology (General)GeneticsHigh-Throughput Nucleotide Sequencingfood and beveragesRNA sequencingViroidsEnzymesAvsunviroidaeDeletion MutationVirusesPhysical SciencesRNA ViralIn-VivoSequence AnalysisResearch ArticleSubstitution MutationHammerhead RibozymesQH301-705.5Materials by StructureBioinformaticsEvolutionMaterials ScienceImmunologyPlant PathogensGenerationReplicationBiologyMicrobiology03 medical and health sciencesSequence Motif AnalysisVirologyGeneticsSolanum melongenaRNA-PolymeraseMolecular BiologyPotato spindle tuber viroidPlant DiseasesMatter030102 biochemistry & molecular biologyPoint mutationOrganismsBiology and Life SciencesProteinsRNAReverse Transcriptase-Polymerase Chain ReactionRC581-607Plant Pathologybiology.organism_classificationVirologyResearch and analysis methodsMolecular biology techniques030104 developmental biologyMutagenesisOligomersMutationEnzymologyRNAMotifParasitologyImmunologic diseases. AllergyPLOS Pathogens
researchProduct

Mechanisms of viral mutation

2016

The remarkable capacity of some viruses to adapt to new hosts and environments is highly dependent on their ability to generate de novo diversity in a short period of time. Rates of spontaneous mutation vary amply among viruses. RNA viruses mutate faster than DNA viruses, single-stranded viruses mutate faster than double-strand virus, and genome size appears to correlate negatively with mutation rate. Viral mutation rates are modulated at different levels, including polymerase fidelity, sequence context, template secondary structure, cellular microenvironment, replication mechanisms, proofreading, and access to post-replicative repair. Additionally, massive numbers of mutations can be intro…

0301 basic medicineMutation rateEvolutionMutation ratevirusesGenome ViralReviewBiologyVirus ReplicationGenetic diversityVirus03 medical and health sciencesCellular and Molecular NeuroscienceMolecular BiologySuppressor mutationRecombination GeneticPharmacologyGeneticsCell BiologyResistance mutationVirologyReplication fidelityVirusPost-replicative repair030104 developmental biologyViral replicationViral evolutionMutationVirusesMutation (genetic algorithm)Dynamic mutationMolecular MedicineHyper-mutationCellular and Molecular Life Sciences
researchProduct

Human norovirus hyper-mutation revealed by ultra-deep sequencing

2016

Human noroviruses (NoVs) are a major cause of gastroenteritis worldwide. It is thought that, similar to other RNA viruses, high mutation rates allow NoVs to evolve fast and to undergo rapid immune escape at the population level. However, the rate and spectrum of spontaneous mutations of human NoVs have not been quantified previously. Here, we analyzed the intra-patient diversity of the NoV capsid by carrying out RT-PCR and ultra-deep sequencing with 100,000-fold coverage of 16 stool samples from symptomatic patients. This revealed the presence of low-frequency sequences carrying large numbers of U-to-C or A-to-G base transitions, suggesting a role for hyper-mutation in NoV diversity. To mor…

0301 basic medicineMutation rateVirologiaGene ExpressionVirus Replicationmedicine.disease_causeFecesMutation RateHuman genetics[SDV.MHEP.MI]Life Sciences [q-bio]/Human health and pathology/Infectious diseasesCloning MolecularComputingMilieux_MISCELLANEOUSCaliciviridae InfectionsGeneticsMutation[SDV.MHEP.ME]Life Sciences [q-bio]/Human health and pathology/Emerging diseasesGenètica humanaHigh-Throughput Nucleotide SequencingGastroenteritisInfectious Diseases[SDV.MP.VIR]Life Sciences [q-bio]/Microbiology and Parasitology/VirologyRNA ViralHyper-mutationMicrobiology (medical)RNA virus[SDE.MCG]Environmental Sciences/Global ChangesContext (language use)BiologyTransfectionMicrobiologyArticleDNA sequencingViral Proteins03 medical and health sciences[SDV.EE.ECO]Life Sciences [q-bio]/Ecology environment/EcosystemsVirologyGeneticsmedicineHumansMolecular BiologyGeneEcology Evolution Behavior and Systematics[SDV.EE.SANT]Life Sciences [q-bio]/Ecology environment/HealthBase SequenceNorovirusRNA virusbiology.organism_classificationVirology[SDV.MP.BAC]Life Sciences [q-bio]/Microbiology and Parasitology/BacteriologyHEK293 Cells030104 developmental biologyViral replicationNext-generation sequencingNorovirus[SDE.BE]Environmental Sciences/Biodiversity and Ecology
researchProduct