Search results for "Vision"
showing 10 items of 5066 documents
Simulation Goals and Metrics Identification
2016
Agent-Based Modeling and Simulation (ABMS) is a very useful means for producing high quality models during simulation studies. When ABMS is part of a methodological ap- proach it becomes important to have a method for identifying the objectives of the simulation study in a disciplined fashion. In this work we propose a set of guidelines for properly capturing and representing the goals of the simulations and the metrics, allowing and evaluating the achievement of a simulation objective. We take inspiration from the goal-question-metric approach and with the aid of a specific problem formalization we are able to derive the right questions for relating simulation goals and metrics.
Homography based egomotion estimation with a common direction
2017
International audience; In this paper, we explore the different minimal solutions for egomotion estimation of a camera based on homography knowing the gravity vector between calibrated images. These solutions depend on the prior knowledge about the reference plane used by the homography. We then demonstrate that the number of matched points can vary from two to three and that a direct closed-form solution or a Gröbner basis based solution can be derived according to this plane. Many experimental results on synthetic and real sequences in indoor and outdoor environments show the efficiency and the robustness of our approach compared to standard methods.
Dynamic Modeling, Energy Analysis, and Path Planning of Spherical Robots on Uneven Terrains
2020
Spherical robots are generally comprised of a spherical shell and an internal actuation unit. These robots have a variety of applications ranging from search and rescue to agriculture. Although one of the main advantages of spherical robots is their capability to operate on uneven surfaces, energy analysis and path planning of such systems have been studied only for flat terrains. This work introduces a novel approach to evaluate the dynamic equations, energy consumption, and separation analysis of these robots rolling on uneven terrains. The presented dynamics modeling, separation analysis, and energy analysis allow us to implement path planning algorithms to find an optimal path. One of t…
An Input Observer-Based Stiffness Estimation Approach for Flexible Robot Joints
2020
This letter addresses the stiffness estimation problem for flexible robot joints, driven by variable stiffness actuators in antagonistic setups. Due to the difficulties of achieving consistent production of these actuators and the time-varying nature of their internal flexible elements, which are subject to plastic deformation over time, it is currently a challenge to precisely determine the total flexibility torque applied to a robot's joint and the corresponding joint stiffness. Herein, by considering the flexibility torque acting on each motor as an unknown signal and building upon Unknown Input Observer theory, a solution for electrically-driven actuators is proposed, which consists of …
Vision guided robotic inspection for parts in manufacturing and remanufacturing industry
2020
AbstractEnvironmental and commercial drivers are leading to a circular economy, where systems and components are routinely recycled or remanufactured. Unlike traditional manufacturing, where components typically have a high degree of tolerance, components in the remanufacturing process may have seen decades of wear, resulting in a wider variation of geometries. This makes it difficult to translate existing automation techniques to perform Non-Destructive Testing (NDT) for such components autonomously. The challenge of performing automated inspections, with off-line tool-paths developed from Computer Aided Design (CAD) models, typically arises from the fact that those paths do not have the r…
An adaptive multi-rate system for visual tracking in augmented reality applications
2016
The visual tracking of an object is a well-known problem, and it involves many fields of applications. Often a single sensor, the camera, could not provide enough information in order to track the whole object trajectory due to a low updating rate; therefore a multi-sensor system, based also on inertial measurements, could be necessary to improve the tracking accuracy. This leads to the fundamental question: how can information from different sensors be combined when they work at different rates? In this paper an approach based on recursive parameter estimation focusing on multi-rate situations is suggested. The problem is here formulated as the state-of-the-art problem of the visual tracki…
Enhancing tracking performance in a smartphone-based navigation system for visually impaired people
2016
In this paper we show how to enhance the tracking performance of Arianna, a low-cost augmented reality system designed to meet the needs of people with problems of orientation, people with sight impairment and blind people. For augmented reality system we mean the design of: i) a set of paths and tags to be deployed in the environment, realized in various ways depending on the context (decorative elements easily identifiable, colorful stripes, QR code, RFID, etc.); ii) an instrument of mediation between the reality and the user (typically a smartphone) to access the information disseminated in the environment by means of a camera and provide a vibration feedback signal to the users for foll…
Direct analysis of power-split CVTs: A unified method
2018
Abstract This paper provides a fast kinematic analysis method for compound power-split CVTs, which consents to identify their functional parameters. Such parameters permit the assessment of power flows, torques and efficiency, and the design of equivalent transmissions by the use of a recently published mathematical model. The same method can easily address either simpler or more complex transmissions by mean of kinematic equivalent parameters, without the need to arrange separate systems of equations. As a case study, we performed the kinematic analysis of the “Voltec” multi-mode GM transmission.
Tracking Control of Networked Multi-Agent Systems Under New Characterizations of Impulses and Its Applications in Robotic Systems
2016
This paper examines the problem of tracking control of networked multi-agent systems with multiple delays and impulsive effects, whose results are applied to mechanical robotic systems. Four kinds of impulsive effects are taken into account: 1) both the strengths of impulsive effects and the number of nodes injected with impulses are time dependent; 2) the strengths of impulsive effects occur according to certain probabilities and the number of nodes under impulsive control is time varying; 3) the strengths of impulses are time varying, whereas the number of nodes with impulses takes place according to certain probabilities; 4) both the strengths of impulses and the number of nodes with imp…
The ARROWS project: adapting and developing robotics technologies for underwater archaeology
2015
4th IFAC Workshop on Navigation, Guidance and Control of Underwater Vehicles, NGCUV 2015; Girona; Spain; 28 April 2015 through 30 April 2015