Search results for "Vision"
showing 10 items of 5066 documents
A numerical model for Wire integrity prediction in Friction Stir Extrusion of magnesium alloys
2017
Abstract A numerical model for the prediction of the wire quality produced by the novel direct machining chip recycling technique known as Friction Stir Extrusion (FSE) is presented. Wire microstructure and wire integrity have been predicted by embedding in the code the equations enabling the calculation of the Zener-Hollomon parameter as well as the W parameter of the Pivnik-Plata solid bonding criterion. The proposed model, developed for the AZ31 magnesium alloy using the commercial simulation package DEFORM, is 3D Lagrangian, thermo-mechanically coupled with visco-plastic material behavior. The model was first validated against experimental temperature measurements and then used to predi…
In-process control strategies for friction stir welding of AZ31 sheets with non-uniform thickness
2017
Two different in-process control strategies were developed and compared with the aim to produce AZ31 magnesium alloy joints by friction stir welding on sheet blanks with a non-uniform thickness. To this purpose, sheets with dip or hump zones were welded by either changing the rotational speed or the tool plunging in order to keep constant the value of the vertical force occurring during the welding stage of the process. The influence of the main process parameters on the tool force, the micro- and macromechanical properties, and the joints microstructures in the dip and hump zones were analyzed. The results showed that using the rotational speed change-based approach, the hump zones are sub…
Optimal control of discrete-time interval type-2 fuzzy-model-based systems with D-stability constraint and control saturation
2016
This paper investigates the optimal control problem for discrete-time interval type-2 (IT2) fuzzy systems with pole constraints. An IT2 fuzzy controller is characterized by two predefined functions, and the membership functions and the premise rules of the IT2 fuzzy controller can be chosen freely. The pole assignment is considered, which is constrained in a presented disk region. Based on Lyapunov stability theory, sufficient conditions of asymptotic stability with an H ∞ performance are obtained for the discrete-time IT2 fuzzy model based (FMB) system. Based on the criterion, the desired IT2 state-feedback controller is designed to guarantee that the closed-loop system is asymptotically s…
Fast Earth Mover's Distance Computation for Catadioptric Image Sequences
2016
International audience; Earth mover's distance is one of the most effective metric for comparing histograms in various image retrieval applications. The main drawback is its computational complexity which hinders its usage in various comparison tasks. We propose fast earth mover's distance computation by providing better initialization to the transportation simplex algorithm. The new approach enables faster EMD computation in Visual Memory (VM) compared to the state of the art methods. The new proposed strategy computes earth mover distance without compromising its accuracy.
Adapted Approach for Omnidirectional Egomotion Estimation
2011
Egomotion estimation is based principally on the estimation of the optical flow in the image. Recent research has shown that the use of omnidirectional systems with large fields of view allow overcoming the limitation presented in planar-projection imagery in order to address the problem of motion analysis. For omnidirectional images, the 2D motion is often estimated using methods developed for perspective images. This paper adapts motion field calculated using adapted method which takes into account the distortions existing in the omnidirectional image. This 2D motion field is then used as input to the egomotion estimation process using spherical representation of the motion equation. Expe…
Calibration of mobile manipulators using 2D positional features.
2018
International audience; Robotic manipulators are increasingly being attached to Automatic Ground Vehicles (AGVs) to aid in the efficiency of assembly for manufacturing systems. However, calibrating these mobile manipulators is difficult as the offset between the robotic manipulator and the AGV is often unknown. This paper provides a novel, simple, and low-cost method for calibrating and measuring the performance of mobile manipulators by using data collected from a laser retroreflector that digitally detects the horizontal two-dimensional (2D) position of reflectors on an artifact as well as a navigation system that provides the heading angle and 2D position of the AGV. The method is mathem…
Vibration control strategy for large-scale structures with incomplete multi-actuator system and neighbouring state information
2016
The synthesis of optimal controllers for vibrational protection of large-scale structures with multiple actuation devices and partial state information is a challenging problem. In this study, the authors present a design strategy that allows computing this kind of controllers by using standard linear matrix inequality optimisation tools. To illustrate the main elements of the new approach, a five-story structure equipped with two interstory actuation devices and subjected to a seismic disturbance is considered. For this control setup, three different controllers are designed: an ideal state-feedback H 8 controller with full access to the complete state information and two static output-fee…
A Comprehensive Survey of Indoor Localization Methods Based on Computer Vision
2020
Computer vision based indoor localization methods use either an infrastructure of static cameras to track mobile entities (e.g., people, robots) or cameras attached to the mobile entities. Methods in the first category employ object tracking, while the others map images from mobile cameras with images acquired during a configuration stage or extracted from 3D reconstructed models of the space. This paper offers an overview of the computer vision based indoor localization domain, presenting application areas, commercial tools, existing benchmarks, and other reviews. It provides a survey of indoor localization research solutions, proposing a new classification based on the configuration stage…
A Review of Recent Range Image Registration Methods with Accuracy Evaluation
2007
International audience; The three-dimensional reconstruction of real objects is an important topic in computer vision. Most of the acquisition systems are limited to reconstruct a partial view of the object obtaining in blind areas and occlusions, while in most applications a full reconstruction is required. Many authors have proposed techniques to fuse 3D surfaces by determining the motion between the different views. The first problem is related to obtaining a rough registration when such motion is not available. The second one is focused on obtaining a fine registration from an initial approximation. In this paper, a survey of the most common techniques is presented. Furthermore, a sampl…
Evaluation Framework for Analyzing the Applicability of Criteria Lists for the Selection of Requirements Management Tools Supporting Distributed Coll…
2016
Effective requirements management and enabling tools are critical for successfully developing and maintaining services and products. The identification and selection of an appropriate requirements management tool can be a costly, time-consuming, and error-prone undertaking especially in the context of software product line requirements management, requiring the tools to support both product and platform development activities that often involve geographically distributed, collaborating, and competing stakeholders. Criteria lists have been developed to facilitate the selection. This research (1) creates an evaluation framework to review the applicability of the lists for the selection of req…