Search results for "WAVELENGTH"

showing 10 items of 741 documents

Gravity modelling of the lower crust in Sardinia (Italy)

1997

In this paper an example is given of an application of statistical techniques to the Bouguer anomalies analysis in order to design a simple crustal model using few a priori assumptions. All gravity measurements carried out in Sardinia have been collected and processed. The Bouguer anomalies have been calculated according to local density estimates. Spectral analysis of the Bouguer anomalies has been carried out along selected profiles in order to estimate the mean depth of the Moho discontinuity and that of an infracrustal discontinuity. The use of this technique inferred the presence of a discontinuity at a mean depth of ~ 28 km, interpreted as Moho and the likely presence of an infracrust…

Density modellcsh:QC801-809CrustGeophysicsfilteringlcsh:QC851-999Geodesyspectral analysisgravitymodellinglcsh:Geophysics. Cosmic physicsWavelengthGeophysicsDiscontinuity (geotechnical engineering)seismiclcsh:Meteorology. ClimatologySpectral analysislocal and regional anomalieesSeismic refractionGeologyBouguer anomalyAnnals of Geophysics
researchProduct

Thermodynamic approach of supercontinuum generation

2009

International audience; This paper is aimed at providing an overview on recent theoretical and experimental works in which a thermodynamic description of the incoherent regime of supercontinuum generation has been formulated. On the basis of the wave turbulence theory, we show that this highly nonlinear and quasi-continuous-wave regime of supercontinuum generation is characterized by two different phenomena. (i) A process of optical wave thermalization ruled by the four-wave mixing effects: The spectral broadening inherent to supercontinuum generation is shown to result from the natural tendency of the optical field to reach its thermodynamic equilibrium state, i. e., the state of maximum n…

Difficult problem[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]SPATIALLY INCOHERENT-LIGHTThermodynamic equilibriumWave turbulenceSOLITONWAVE TURBULENCEPhysics::OpticsNon-equilibrium thermodynamicsOptical field01 natural sciencesCONDENSATION010309 opticsEntropy (classical thermodynamics)symbols.namesakeMODULATION-INSTABILITYQuantum mechanics0103 physical sciencesPHOTONIC CRYSTAL FIBERStatistical physicsElectrical and Electronic Engineering010306 general physicsNonlinear Schrödinger equationOPTICAL-FIBERSNonlinear Sciences::Pattern Formation and SolitonsInstrumentationComputingMilieux_MISCELLANEOUSPhysics[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics][ PHYS.PHYS.PHYS-OPTICS ] Physics [physics]/Physics [physics]/Optics [physics.optics]Fiber nonlinear opticsDISPERSION WAVELENGTHSTHERMALIZATIONAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsSupercontinuumNonlinear systemControl and Systems EngineeringsymbolsSolitonRaman scatteringPATTERN-FORMATION
researchProduct

Hybrid (diffractive-refractive) optical processor for space-variant color pattern recognition

2002

Space-variant optical processing constitutes an interesting approach in information processing techniques when the location of the reference object is of as much importance as its identification. Applications range from machine vision, optical logic, or neural network systems, to cryptography. First results of positional sensitivity were obtained in the past few years by Fresnel transform correlators with coherent light [1,2]. On the other hand, optical Fresnel cor-relators working under broadband point-source illumination allow us to exploit color information of input scenes and present a discrimination ability higher than its monochromatic counterparts. However, the use of the wavelength …

DiffractionArtificial neural networkbusiness.industryMachine visionComputer sciencePhysics::OpticsWavelengthOpticsPattern recognition (psychology)BroadbandComputer visionArtificial intelligenceMonochromatic colorbusinessFresnel diffractionDiffractive Optics and Micro-Optics
researchProduct

Optically Forged Diffraction-Unlimited Ripples in Graphene

2018

In nanofabrication, just as in any other craft, the scale of spatial details is limited by the dimensions of the tool at hand. For example, the smallest details for direct laser writing with far-field light are set by the diffraction limit, which is approximately half of the used wavelength. In this work, we overcome this universal assertion by optically forging graphene ripples that show features with dimensions unlimited by diffraction. Thin sheet elasticity simulations suggest that the scaled-down ripples originate from the interplay between substrate adhesion, in-plane strain, and circular symmetry. The optical forging technique thus offers an accurate way to modify and shape two-dimens…

DiffractionLetterMaterials scienceta221FOS: Physical sciencesPhysics::Opticsnanotekniikka02 engineering and technology01 natural sciencesForginglaw.inventionResonatornanorakenteetlawMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesgrafeeniGeneral Materials SciencePhysical and Theoretical Chemistry010306 general physicsta116PlasmonCondensed Matter - Mesoscale and Nanoscale Physicsta114business.industryGraphenegraphene021001 nanoscience & nanotechnologyLaseroptical forgingWavelengthNanolithographyOptoelectronics0210 nano-technologybusinessJournal of Physical Chemistry Letters
researchProduct

Extraordinary nonlinear transmission modulation in a doubly resonant acousto-optical structure

2017

International audience; Acousto-optical modulators usually rely on coherent diffraction of light by a moving acoustic wave, leading to bulky devices with a long interaction length. We propose a subwavelength acousto-optical structure that instead relies on a double resonance to achieve strong modulation at near-infrared wavelengths. A periodic array of metal ridges on a piezoelectric substrate defines cavities that create a resonant dip in the optical transmission spectrum. The ridges simultaneously support large flexural vibrations when resonantly excited by a radio-frequency signal, effectively deforming the cavities and leading to strongly nonlinear acousto-optical modulation. The nano-o…

DiffractionMaterials sciencePhysics::Optics02 engineering and technology01 natural sciencesSignal[SPI.MAT]Engineering Sciences [physics]/MaterialsOptics0103 physical sciences[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics010306 general physics[SPI.ACOU]Engineering Sciences [physics]/Acoustics [physics.class-ph][PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]business.industryFano resonanceAcoustic wave021001 nanoscience & nanotechnologyAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsWavelengthSurface waveModulationOptoelectronicsPhotonics0210 nano-technologybusiness
researchProduct

Recent Advances in 3D Structured Illumination Microscopy

2018

In structured illumination microscopy (SIM) the sample under investigation is illuminated using a structured illumination (SI) pattern. This SI pattern encodes high spatial frequencies of fine features within the sample, which usually are not transferred by the conventional three-dimensional (3D) optical transfer function (OTF) of the imaging system and fills the missing cone of frequencies in the OTF for better discrimination of the out-of-focus light. Thereby, SIM provides super-resolution (SR) performance beyond the diffraction limit and optical-sectioning (OS) capability with the use of data post-processing approaches. 3D structured patterns that include lateral and axial variations in …

DiffractionMaterials sciencebusiness.industry02 engineering and technologyWollaston prism021001 nanoscience & nanotechnology01 natural sciencesNoise (electronics)law.invention010309 opticsLens (optics)WavelengthOpticslawOptical transfer function0103 physical sciencesSpatial frequency0210 nano-technologybusinessFrequency modulation2018 20th International Conference on Transparent Optical Networks (ICTON)
researchProduct

Analysis of acousto-optic tunable filter performance for imaging applications

2010

Acousto-optic tunable filters (AOTFs) can be used as spec- tral filters in multispectral imaging applications. Acousto-optic crystals diffract a single wavelength from a broadband light beam, depending on the applied radio frequency signal. However, experimental measurements show that the actual performance is far from the expected behavior. We present an experimental characterization of several commercial off-the- shelf AOTFs for the implementation of multispectral imaging instruments. The diffraction performance of three bare crystals is compared, while a fourth AOTF crystal is mounted on the optical path of a multispectral im- ager to evaluate its performance. The experiments show that t…

DiffractionMaterials sciencebusiness.industryMultispectral imageGeneral EngineeringFilter (signal processing)Diffraction efficiencyAtomic and Molecular Physics and OpticsWavelengthOpticsOptical pathBroadbandLight beambusinessOptical Engineering
researchProduct

Enhanced diffraction of light in GaAs microcavities

1995

We theoretically analyze the diffraction of light by gratings that are photogenerated in Fabry–Perot microcavities. The coupled-wave theory of volume gratings is combined with appropriate boundary conditions to yield expressions for the diffraction efficiency. Multiple round trips within the cavity are seen to increase the effective grating thickness and therefore the efficiency. Numerical calculations specific to GaAs microcavities show that the diffraction efficiency can be enhanced by more than 2 orders of magnitude at the resonant wavelengths.

DiffractionMaterials sciencebusiness.industryOrders of magnitude (temperature)Physics::OpticsStatistical and Nonlinear PhysicsGratingDiffraction efficiencyAtomic and Molecular Physics and OpticsWavelengthOpticsAttenuation coefficientOptoelectronicsReflection coefficientbusinessDiffraction gratingJournal of the Optical Society of America B
researchProduct

Subwavelength surface waves with zero diffraction

2011

We identified nanostructured devices sustaining out-of-plane nondiffracting beams with near-grazing propagation and a transverse beamwidth clearly surpassing the diffraction limit of half a wavelength. This type of device consists of a planar multilayered metal-dielectric structure with a finite number of films deposited on a solid transparent substrate. We assumed that the nondiffracting beam is launched from the substrate. The construction of the subwavelength diffraction-free beam is attended by plane waves which are resonantly transmitted through the stratified medium. Therefore, light confinement and wave amplification occurs simultaneously. We performed an optimization process concern…

DiffractionMaterials sciencebusiness.industryWave propagationNanophotonicsPlane wavePhysics::OpticsCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsBeamwidthWavelengthOpticsSurface waveOptoelectronicsPropagation constantbusinessJournal of Nanophotonics
researchProduct

Fractal-structured multifocal intraocular lens

2017

[EN] In this work, we present a new concept of IOL design inspired by the demonstrated properties of reduced chromatic aberration and extended depth of focus of Fractal zone plates. A detailed description of a proof of concept IOL is provided. The result was numerically characterized, and fabricated by lathe turning. The prototype was tested in vitro using dedicated optical system and software. The theoretical Point Spread Function along the optical axis, computed for several wavelengths, showed that for each wavelength, the IOL produces two main foci surrounded by numerous secondary foci that partially overlap each other for different wavelengths. The result is that both, the near focus an…

DiffractionOptical PhenomenaFocus (geometry)VisionSocial Scienceslcsh:MedicinePhysics::Optics01 natural sciences0302 clinical medicineMedicine and Health SciencesPsychologylcsh:ScienceLens (Anatomy)PhysicsMultidisciplinaryPhysicsOphthalmic ProceduresCataract SurgeryOptical LensesWavelengthFractalsOptical EquipmentPhysical SciencesEngineering and TechnologySensory PerceptionAnatomyDiffractionResearch ArticlePoint spread functionOcular AnatomyGeometryEquipmentSurgical and Invasive Medical ProceduresIn Vitro TechniquesProsthesis DesignProof of Concept Study010309 optics03 medical and health sciencesFractalOpticsOcular SystemOptical transfer function0103 physical sciencesChromatic aberrationPrototypesComputer Simulationbusiness.industrylcsh:RBiology and Life SciencesModels TheoreticalMultifocal Intraocular LensesOptical axisTechnology DevelopmentFISICA APLICADAWaves030221 ophthalmology & optometryEyeslcsh:QbusinessHeadMathematicsNeuroscience
researchProduct