Search results for "WAVELENGTH"
showing 10 items of 741 documents
Irradiance in polluted cumulus fields: Measured and modeled cloud-aerosol effects
2009
[1] We present a new strategy to validate modeled spectral irradiance of shallow cumulus cloud fields in a polluted background with airborne measurements. The concept is based on a spectral distinction of effects associated with heterogeneous clouds, aerosol particles, and surface albedo. We use measurements from the Gulf of Mexico Atmospheric Composition and Climate Study, conducted in the urban-industrial Houston area. Modeled irradiance fields were obtained from extensive three-dimensional radiative transfer calculations applied to the output of large eddy simulations. We show that the measurements below clouds or cloud gaps can only be reproduced by the calculations when including the a…
Error sources on the land surface temperature retrieved from thermal infrared single channel remote sensing data
2006
In this paper, a theoretical study complementary to others given in the literature about the errors committed on the land surface temperature retrieved from the radiative transfer equation in the thermal infrared region by remote sensing techniques has been analysed. For this purpose, the MODTRAN 3.5 code has been used in order to simulate different conditions and evaluate the influence of several parameters on the land surface temperature accuracy: atmospheric correction, noise of the sensor, land surface emissivity, aerosols and other gaseous absorbers, angular effects, wavelength uncertainty, full‐width half‐maximum of the sensor and band‐pass effects. The results show that the most impo…
Second harmonic generation in selenium-metal structures
2009
The article examines the processes of second harmonic generation (SHG) when selenium-metal (Cu) film structures are illuminated by femtosecond radiation (180 fs, 80 MHz) at wavelength 800 – 1000 nm. Selenium-copper structures were obtained by successive thermal evaporation of selenium and copper onto the glass substrate in vacuum. Microanalysis of the film composition was performed to determine amount of copper in thin films. The as-evaporated selenium-copper structures were crystallised by annealing in inert atmosphere at temperature 85°C. Just evaporated as well as annealed thin films were explored. The experiment was performed by confocal microscope [1] where the femtosecond radiation fr…
One-dimensional wavelength multiplexed microscope without objective lens
2009
A new approach aimed to achieve microscopic imaging without objective lenses and based on wavelength multiplexing of the spatial object information is presented. The proposed method is used to develop, construct and experimentally validate a new type of optical microscope having no objective lens and no numerical reconstruction algorithms to allow imaging process. In order to extract the collected spatial information we use a spectrometer as part of our microscope system. Preliminary results are presented while considering two different types of one-dimensional (1-D) objects.
Superresolution imaging of biological nanostructures by spectral precision distance microscopy
2011
For the improved understanding of biological systems on the nanoscale, it is necessary to enhance the resolution of light microscopy in the visible wavelength range beyond the limits of conventional epifluorescence microscopy (optical resolution of about 200 nm laterally, 600 nm axially). Recently, various far-field methods have been developed allowing a substantial increase of resolution ("superresolution microscopy", or "lightoptical nanoscopy"). This opens an avenue to 'nano-image' intact and even living cells, as well as other biostructures like viruses, down to the molecular detail. Thus, it is possible to combine light optical spatial nanoscale information with ultrastructure analyses…
Suspended core tellurite glass optical fibers for infrared supercontinuum generation
2011
International audience; We report the fabrication and characterization of tellurite TeO(2)-ZnO-Na(2)O (TZN) microstructured suspended core optical fibers (MOFs). These fibers are designed for infrared supercontinuum generation with zero dispersion wavelength (ZDW) at 1.451 mu m. The measured losses at this wavelength are approximately 6 dB/m for a MOF with a 2.2 mu m diameter core. The effective area of a particular fiber is 3.5 mu m(2) and the nonlinear coefficient is calculated to be 437 W(-1)km(-1). By pumping a 20 cm long fiber at 1.56 mu m with a sub-nj femtosecond laser source, we generate a supercontinuum (SC) spanning over 800 nm in the 1-2 mu m wavelength range.
Fluorescence Probes Exhibit Photoinduced Structural Planarization: Sensing <i>in vitro</i> and <i>in vivo</i> Microscopic Dyn…
2019
We demonstrate the construction of wavelength λ-ratiometric images that allow visualizing the distribution of microscopic dynamics within living cells and tissues by using the newly developed principle of fluorescence response. The bent-to-planar motion in the excited state of incorporated fluorescence probes leads to elongation of the π-delocalization, resulting in microviscosity-dependent but polarity-insensitive interplay between well-separated blue and red bands in emission spectra. This allows constructing the exceptionally contrasted images of cellular dynamics. Moreover, the application of probes with increased affinity towards biological membranes allowed detecting the differences i…
"Photonic lantern" spectral filters in multi-core fibre
2012
Fiber Bragg gratings are written across all 120 single-mode cores of a multi-core optical Fiber. The Fiber is interfaced to multimode ports by tapering it within a depressed-index glass jacket. The result is a compact multimode "photonic lantern" filter with astrophotonic applications. The tapered structure is also an effective mode scrambler.
Acousto-Optic Interaction for Accurate Two-Mode Optical Fibers Characterization
2016
Accurate characterization of two-mode fibers by acousto-optic interaction is reported. Difference of modal index, group delay, and dispersion between the guided modes is obtained. Properties of the vector modes comprising the LP11 mode are investigated.
Polarization mode dispersion and vectorial modulational instability in air silica microstructure fiber
2002
The birefringence of an air-silica microstructure fiber has been studied by measurement of the fiber polarization mode dispersion (PMD) over the wavelength range 545-640 nm. The experimental results are shown to be in good agreement with vectorial numerical calculations, assuming an elliptical core with an eccentricity of 7%. We also report controlled experiments studying nonlinear vectorial modulation instability in the fiber, yielding 3.9-THz modulational instability sideband shifts that are in good agreement with theoretical predictions based on the calculated fiber dispersion and PMD characteristics.