Search results for "WINTER"
showing 10 items of 175 documents
Assembling and testing a generic phenological model to predict Lobesia botrana voltinism for impact studies.
2020
13 pages; International audience; The physiological development of insect pests is driven by temperature and photoperiod. Geographic variations in the speed of growth reflect current patterns in thermal conditions as a function of latitude and altitude. Global warming will likely lead to shifts in pests’ phenology. Insects are expected to overwinter earlier and develop more generations, with implications for the risks of damage to agricultural crops. Understanding and monitoring of the voltinism of insect pests will be increasingly important to anticipate critical phases of pest development and devise options for adapting pest control measures. In this study, we describe a new generic pheno…
Do phase-dependent life history traits in cyclic voles persist in a common environment?
2019
Phenotype and life history traits of an individual are a product of environmental conditions and the genome. Environment can be current or past, which complicates the distinction between environmental and heritable effects on the phenotype in wild animals. We studied genome–environment interactions on phenotype and life history traits by transplanting bank voles (Myodes glareolus) from northern and southern populations, originating from low or high population cycle phases, to common garden conditions in large outdoor enclosures. The first experiment focused on the persistence of body traits in autumn-captured overwintering populations. The second experiment focused on population growth and …
Interannual variation and long-term trends in proportions of resident individuals in partially migratory birds
2016
Partial migration - a part of a population migrates and another part stays resident year-round on the breeding site - is probably the most common type of migration in the animal kingdom, yet it has only lately garnered more attention. Theoretical studies indicate that in partially migratory populations, the proportion of resident individuals (PoR) should increase in high latitudes in response to the warming climate, but empirical evidence exists for few species. We provide the first comprehensive overview of the environmental factors affecting PoR and the long-term trends in PoR by studying 27 common partially migratory bird species in Finland. The annual PoR values were calculated by divid…
Latitudinal clines in the timing and temperature‐sensitivity of photoperiodic reproductive diapause in Drosophila montana
2020
Reproductive diapause is a primary mechanism used by arthropods to synchronize their life cycle with seasonal changes in temperate regions. Our study species, Drosophila montana, represents the northern insect species where flies enter reproductive diapause under short day conditions and where the precise timing of diapause is crucial for both survival and offspring production. We have studied clinal variation in the critical day length for female diapause induction (CDL) and their overall susceptibility to enter diapause (diapause incidence), as well as the temperature sensitivity of these traits. The study was performed using multiple strains from four latitudinal clines of the species – …
Is a change in juvenile hormone sensitivity involved in range expansion in an invasive beetle?
2015
Introduction: It has been suggested that rapid range expansion could proceed through evolution in the endocrinological machinery controlling life-history switches. Based on this we tested whether the Colorado potato beetle, Leptinotarsa decemlineata, which has rapidly expanded its range across latitudinal regions in Europe, and shows photoperiodic adaptation in overwintering initiation, has different sensitivities to juvenile hormone (JH) manipulation along a latitudinal gradient. Results: A factorial experiment where beetles were reared either under a long or short day photoperiod was performed. Hormone levels were manipulated by topical applications. An allatostatin mimic, H17, was used t…
Positive impacts of important bird and biodiversity areas on wintering waterbirds under changing temperatures throughout Europe and North Africa
2020
Clausen, Preben/0000-0001-8986-294X WOS: 000536149100018 Migratory waterbirds require an effectively conserved cohesive network of wetland areas throughout their range and life-cycle. Under rapid climate change, protected area (PA) networks need to be able to accommodate climate-driven range shifts in wildlife if they are to continue to be effective in the future. Thus, we investigated geographical variation in the relationship between local temperature anomaly and the abundance of 61 waterbird species during the wintering season across Europe and North Africa during 1990-2015. We also compared the spatio-temporal effects on abundance of sites designated as PAs, Important Bird and Biodivers…
Current and future suitability of wintering grounds for a long-distance migratory raptor
2017
Conservation of migratory species faces the challenge of understanding the ecological requirements of individuals living in two geographically separated regions. In some cases, the entire population of widely distributed species congregates at relatively small wintering areas and hence, these areas become a priority for the species’ conservation. Satellite telemetry allows fine tracking of animal movements and distribution in those less known, often remote areas. Through integrating satellite and GPS data from five separated populations comprising most of the breeding range, we created a wide habitat suitability model for the Eleonora’s falcon on its wintering grounds in Madagascar. On this…
The use of ecological traits in extinction risk assessments: A case study on geometrid moths
2008
Identifying ecological traits that make some species more vulnerable than others is vital for predictive conservation science. By identifying these predisposing traits we can predict which species are most prone to decline and gain an understanding of the reasons behind the decline. The aim of this study was to determine the ecological traits that best predict extinction risk and distribution change in Finnish geometrid moths and to develop an understanding of the biological connections between these traits and threats. We found that larval specificity, overwintering stage and flight period length predicted distribution change and extinction risk. There was also an interaction effect betwee…
Weak effects of geolocators on small birds: A meta-analysis controlled for phylogeny and publication bias
2020
Abstract Currently, the deployment of tracking devices is one of the most frequently used approaches to study movement ecology of birds. Recent miniaturization of light‐level geolocators enabled studying small bird species whose migratory patterns were widely unknown. However, geolocators may reduce vital rates in tagged birds and may bias obtained movement data. There is a need for a thorough assessment of the potential tag effects on small birds, as previous meta‐analyses did not evaluate unpublished data and impact of multiple life‐history traits, focused mainly on large species and the number of published studies tagging small birds has increased substantially. We quantitatively reviewe…
Species composition modulates seedling competitiveness of temperate tree species under hemiboreal conditions
2020
Abstract Mixed stands are advised for reduction of impacts of natural hazards, and species composition can largely affect sustainability and productivity of the stands. Early development of a stands after a stand-replacing disturbance can have considerable legacy effects on growth via alterations in the diversity-productivity relationships. Accordingly compatibility of growth and competitiveness of different species is one of the key issues for susceptibility of mixed stands. A two-year chamber experiment was conducted to assess early growth and intra- and inter-specific competition for light and soil resources among the seedlings of temperate tree species simulating the predicted effect of…