Search results for "Winemaking"

showing 10 items of 181 documents

Influence of nitrogen status in wine alcoholic fermentation

2019

Nitrogen is an essential nutrient for yeast during alcoholic fermentation. Nitrogen is involved in the biosynthesis of protein, amino acids, nucleotides, and other metabolites, including volatile compounds. However, recent studies have called several mechanisms that regulate its role in biosynthesis into question. An initial focus on S. cerevisiae has highlighted that the concept of "preferred" versus "non-preferred" nitrogen sources is extremely variable and strain-dependent. Then, the direct involvement of amino acids consumed in the formation of proteins and volatile compounds has recently been reevaluated. Indeed, studies have highlighted the key role of lipids in nitrogen regulation in…

chemistry.chemical_classification0303 health sciencesVolatile Organic Compounds030306 microbiologyNitrogen[SDV]Life Sciences [q-bio]Context (language use)WineSaccharomyces cerevisiaeEthanol fermentationMicrobiologyYeastAmino acid03 medical and health scienceschemistry.chemical_compoundBiosynthesischemistryBiochemistryFermentationFermentationAmino AcidsEssential nutrient030304 developmental biologyFood ScienceWinemaking
researchProduct

Yeast-Bacteria Coinoculation

2019

Abstract Yeasts and lactic acid bacteria (LAB) coinoculation is the simultaneous, or close in time inoculation, of both types of microorganisms in winemaking. Coinoculation has been used mainly to early accomplish malolactic fermentation (MLF), employing generally the couples Oenococcus oeni/Saccharomyces cerevisiae and Lactobacillus plantarum/S. cerevisiae. Early completion of MLF decreases the overall vinification time, reduces the microbial spoilage risk, and even prevents the biogenic amines synthesis. LAB/yeasts coinoculation could be also used to increase the acidity of wines when inoculated in grape must, using sugar to synthesize lactic acid and producing ethanol diminution. Coinocu…

biologyFood spoilagefood and beveragesbiology.organism_classificationYeastLactic acidchemistry.chemical_compoundchemistryMalolactic fermentationFood scienceLactobacillus plantarumBacteriaWinemakingOenococcus oeni
researchProduct

Genetic manipulation of HSP26 and YHR087W stress genes may improve fermentative behaviour in wine yeasts under vinification conditions

2008

Throughout wine production yeast cells are affected by a plethora of stress conditions that compromise their ability to carry out the whole process. In recent years important knowledge about the mechanisms involved in stress response in both laboratory and wine yeast strains has been obtained. Several studies have indicated that a correlation exists between stress resistance, expression of stress response genes and fermentative behaviour. In this work we introduce several genetic manipulations in two genes induced by several stress conditions: HSP26 (which encodes a heat shock protein) and YHR087W (encoding a protein of unknown function) in two different wine yeasts, ICV16 and ICV27. These …

GeneticsWineSaccharomyces cerevisiae ProteinsTime FactorsSPI1CentromereRNA-Binding ProteinsWineSaccharomyces cerevisiaeGeneral MedicineBiologyMicrobiologyYeastYeast in winemakingPlasmidYeastsHeat shock proteinFermentationGene expressionPromoter Regions GeneticGeneHeat-Shock ProteinsPlasmidsFood ScienceInternational Journal of Food Microbiology
researchProduct

Influence of grape transport and destemming systems on the quality of Chardonnay wines

2016

The winemaking technology plays a very important role in enology as it directly influences the characteristics of wine. In particular, grape transport and destemming are critical steps in winemaking for the wine quality. The aim of this study was to compare two different processing lines of Chardonnay grapes to evaluate their effects on the quality of the final product. In particular, grapes receiving, transporting and destemming were performed using different machines in order to evaluate their influence on the quality of Chardonnay wines. The use of a receiving hopper equipped with a belt conveyor, followed by a destemmer equipped with partially coated rubber beaters, allowed to obtain Ch…

Settore AGR/13 - Chimica AgrariaSettore AGR/09 - Meccanica AgrariaScrew conveyorBelt conveyorDestemmerWinemakingBelt conveyor; Destemmer; Screw conveyor; Winemaking
researchProduct

Evaluation of different genetic procedures for the generation of artificial hybrids in Saccharomyces genus for winemaking

2012

Several methods based on recombinant DNA techniques have been proposed for yeast strain improvement; however, the most relevant oenological traits depend on a multitude of loci, making these techniques difficult to apply. In this way, hybridization techniques involving two complete genomes became interesting. Natural hybrid strains between different Saccharomyces species have been detected in diverse fermented beverages including wine, cider and beer. These hybrids seem to be better adapted to fluctuating situations typically observed in fermentations due to the acquisition of particular physiological properties of both parental strains. In this work we evaluated the usefulness of three dif…

GeneticsbiologyDNA RecombinantGenetic VariationWineGeneral MedicineProtoplastbiology.organism_classificationMicrobiologySaccharomycesGenetically modified organismBeveragesSaccharomycesYeast in winemakingYeast DriedYeastsFermentationGenetic variationHybridization GeneticGenetic variabilitySaccharomyces kudriavzeviiFood ScienceHybridInternational Journal of Food Microbiology
researchProduct

Natural hybrids fromSaccharomyces cerevisiae,Saccharomyces bayanusandSaccharomyces kudriavzeviiin wine fermentations

2006

Several wine isolates of Saccharomyces were analysed for six molecular markers, five nuclear and one mitochondrial, and new natural interspecific hybrids were identified. The molecular characterization of these Saccharomyces hybrids was performed based on the restriction analysis of five nuclear genes ( CAT8 , CYR1 , GSY1 , MET6 and OPY1 , located in different chromosomes), the ribosomal region encompassing the 5.8S rRNA gene and the two internal transcribed spacers, and sequence analysis of the mitochondrial gene COX2 . This method allowed us to identify and characterize new hybrids between Saccharomyces cerevisiae and Saccharomyces kudriavzevii , between S. cerevisiae and Saccharomyces ba…

Nuclear geneGenes FungalSaccharomyces cerevisiaeSaccharomyces bayanusWineSaccharomyces cerevisiaeDNA MitochondrialApplied Microbiology and BiotechnologyMicrobiologySaccharomycesElectron Transport Complex IVSaccharomycesDNA Ribosomal SpacerDNA FungalPhylogenyWineFermentation in winemakingGeneticsbiologySaccharomyces eubayanusGeneral Medicinebiology.organism_classificationElectrophoresis Gel Pulsed-FieldRNA Ribosomal 5.8SKaryotypingFermentationHybridization GeneticPolymorphism Restriction Fragment LengthSaccharomyces kudriavzeviiFEMS Yeast Research
researchProduct

Implementation of an innovative technique to improve Sauvignon Blanc wine quality

2018

The purpose of the study was to compare two different pressing systems of Sauvignon Blanc grapes using an innovative wine press manufactured by Puleo Srl Company (Marsala, Italy). Grape pressing is a very important step in the winemaking process as it may promote the presence and/or absence of enzyme processes on the must, leading to the creation of different products in terms of chemical composition from the same grapes. Chemical composition of must firstly and wine after, obtained from the two pressing mode, was analysed in first instance with PCA method.

winemaking quality PCA
researchProduct

Yeast Population Dynamics during the Fermentation and Biological Aging of Sherry Wines

2001

ABSTRACTMolecular and physiological analyses were used to study the evolution of the yeast population, from alcoholic fermentation to biological aging in the process of “fino” sherry wine making. The four races of “flor”Saccharomyces cerevisiae (beticus, cheresiensis, montuliensis, androuxii) exhibited identical restriction patterns for the region spanning the internal transcribed spacers 1 and 2 (ITS-1 and ITS-2) and the 5.8S rRNA gene, but this pattern was different, from those exhibited by non-florS. cerevisiaestrains. This flor-specific pattern was detected only after wines were fortified, never during alcoholic fermentation, and all the strains isolated from the velum exhibited the typ…

DNA BacterialRestriction MappingPopulationFlorWineSaccharomyces cerevisiaeEthanol fermentationBiologyDNA MitochondrialApplied Microbiology and BiotechnologyIndustrial MicrobiologyDNA Ribosomal SpacerBotanyFood scienceeducationEcosystemWineeducation.field_of_studyEcologyAging of winefood and beveragesPhysiology and BiotechnologyYeastRNA Ribosomal 5.8SYeast in winemakingKaryotypingFermentationFermentationPolymorphism Restriction Fragment LengthFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Wine microbiome : A dynamic world of microbial interactions

2015

International audience; Most fermented products are generated by a mixture of microbes. These microbial consortia perform various biological activities responsible for the nutritional, hygienic, and aromatic qualities of the product. Wine is no exception. Substantial yeast and bacterial biodiversity is observed on grapes, and in both must and wine. The diverse microorganisms present interact throughout the winemaking process. The interactions modulate the hygienic and sensorial properties of the wine. Many studies have been conducted to elucidate the nature of these interactions, with the aim of establishing better control of the two fermentations occurring during wine processing. However, …

0301 basic medicineMicroorganism030106 microbiologyInteractionsWineBiologyIndustrial and Manufacturing Engineering03 medical and health sciencesYeasts[SDV.IDA]Life Sciences [q-bio]/Food engineeringMicrobiomeWinemakingWineBacteriabusiness.industryMicrobiotadigestive oral and skin physiology[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringfood and beveragesGeneral MedicineYeastBiotechnology13. Climate actionFermentationFood MicrobiologyCo-culturebusinessFood Science
researchProduct

NMR spectroscopy evaluation of direct relationship between soils and molecular composition of red wines from Aglanico grapes

2010

1H NMR spectroscopy was employed to investigate the molecular quality of Aglianico red wines from the Campania region of Italy. The wines were obtained from three different Aglianico vineyards characterized by different microclimatic and pedological properties. In order to reach an objective evaluation of “terroir” influence on wine quality, grapes were subjected to the same winemaking procedures. The careful subtraction of water and ethanol signals from NMR spectra allowed to statistically recognize the metabolites to be employed in multivariate statistical methods: Principal Component Analysis (PCA), Discriminant Analysis (DA) and Hierarchical Clustering Analysis (HCA). The three wines we…

Nuclear Magnetic ResonanceSettore AGR/13 - Chimica AgrariaAnalytical chemistryMultivariate statistical analysiBiochemistryAnalytical ChemistryChemometricsEnvironmental ChemistryOrganic matterFood scienceSpectroscopyWinemakingTerroirWinechemistry.chemical_classificationterroirChemistrydigestive oral and skin physiologyfood and beveragesNuclear magnetic resonance spectroscopyNuclear Magnetic Resonance; Aglianico red wines; Multivariate statistical analysis; terroirAglianico red wineSoil waterPrincipal component analysisSettore AGR/16 - Microbiologia Agraria
researchProduct